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Les étudiants de troisiéme année licence de 'université fréres Mentouri de
Constantine, a qui s’adresse ce cours, ont déja étudié la théorie de la mesure
et d’intégration, en particulier les espaces mesurés, les inetégrales et pouvoir
intervertir passage a la limite et I'intégrale, sous des conditions acceptables,
la relation entre I'intégrale de Lebesgue et de Riemann.

Dans ce polycopié, dans le premier chapitre, nous présentons I’espace mesué
produit et ces propriétés notamment les Thorémes de Fubini et quelques ap-
plications utiles concernant l'intégrations multiples.

Nous présentons, par la suite, quelques mesure particuliéres et la décompo-
sition d’une mesure en fonction de deux mesures. Nous donnons une étude
détaillée concernant les différents mode de convergences en particulier la
convergence presque partout, la convergence en mesure et la relation entre
eux.

Le quatriéme chapitre est consacré a I’étude des séries et de la transformation
de Fourier.

Comme ce polycopié est un cours, nous avons pris le parti de démontrer
presque tous les résultats de fagn compléte. Aprés chaque chapitre, comme

application, le cours est illustré par des nombreux exercices.



Chapitre 1

Produit de mesures

1.1 Produit d’espaces mesurables

Définition 1.1. (Tribu produit)

Soient (E1, F1) et (Eq, Fo) deux espaces mesurables, on désigne par Fi @ Fo

la tribu sur Ey x Ey engendrée par les rectangles mesurables, c’est a dire
.Fl ®f2 = 0’(./—"1 X .FQ) = U({A1 X Ag : Al € fl,Ag € Fz})

Remarque 1.1. o [’ensemble des rectangles mesurables

{A1XA22A1€I17A2€.FQ}

n’est pas une tribu en général.



o Le produit de la tribu borélienne sur R par elle méme donne la tribu
borélienne sur R?, on a donc B(R) @ B(R) = B(R?). (Voir dans exer-

cices supplémentaires)

Proposition 1.1. La tribu Fy ® Fo est la plus petite tribu sur E1 X Ey qui

rende mesurable les deux projections canoniques :

T - (El X Eg,f1®.7:2) — <E1,f1)77rl(x7y) =x

T ! (E1 X E27f1 ®./—"2) — (E27f2),71'2($,y> =Y.

Preuve 1.1. 1 et my sont mesurables car pour tout Ay € F1 et Ay € Fo on a

Wfl(Al):{(l',y)EElXEQiZCEAl}:AlXEQEFl@.FQ

et
W;1<A2):E1XA2€I1®.FQ.

Soit G une tribu sur Fy X Ey rendant mesurable les applications m et ms.

Pour tout Ay € Fy et Ay € Fo,

Al X AQ = (Al X EQ) N (El X AQ) = 7'('1_1(A1) ﬂﬂ'z_l(Ag) S Q,

ce qui prouve que F1 X Fo C G, dot F1 @ Fo CG.
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Proposition 1.2. Soit (E, M), (E1,F1) et (Ey, F2) trois espaces mesurables
et soit application f = (fi1, fa) : (E, M) — (Ey X Ey, F1 ® F2), alors f est

mesurable si el seulement si

f1 : (E,M) — (El,Fl),

et

f2 : (E,M) — (Eg,./_"g),
sont mesurables.

Preuve 1.2. Si [ est mesurable, alors f{ = mof et fo = myo f le sont aussi
comme composition de fonctions mesurables.
Inversement si fi et fo sont mesurables, alors pour tout A1 € Fi et Ay € Fo

on a

A X A) = (A X By) N (B x Ay))

= [ (A) Nyt (A))
= [ (A) N (As))
= (mo ) (A) N (rz20f)7 (Ay)

= fiN(A)N [y (A2) e M.

Alors comme Fy @ Fo = o(Fy X Fa), [ est mesurable.

Définition 1.2. (Les sections)



Pour toute partie A de E1 x FEy et tout x € Ey, on définit la section de A

selon x, ’ensemble

A, ={ye€ Ey: (z,y) € A}

De la méme maniére, on définit la section de A selon y, par ['ensemble

A, ={r € E : (z,y) € A}.

Exemple 1.1. e Pour E1 = FE; =R, on a
([1,3] x [=4, =2])uma = [—4, —2], ([1,3] X [-4, —2])ss5 = 0.

([17 3] X [_47 _2])31:—3 = [1’ 3]? ([17 3] X [_47 _2])1/:0 = @

o Généralement, soit A1 € F1, Ay € Fy des mesurables de Ey et de Fs,

alors

AQ, st x € A17
(Al X Ag)z =

0, six¢ A

\

A17 St Y€ A27
(A x A)y =

0, siy ¢ As.

Définition 1.3. (les applications partielles)

Soit Uapplication f : By X Ey — F. Pour x € Ei,y € FEs, on definit les



applications partielles

foE2—>F

fo(y) = f(z,y)

et

fy1E1—>F

fy(x) = f(z,y).

La tribu produit F; ® F5 assure la mesurabilité des sections et les appli-

cations partielles. En effet, on a

Proposition 1.3. Soient (Ey, F1) et (Ey, F2) deux espaces mesurables.
(a) Soit A € Fi @ Fa, alors pour tout v € Ey ety € By, on a A, € F; et
A, € Fi.
(b) Silapplication f : (Eyx Ey, Fi@F) = (R, B(R)) est mesurable, alors
les applications partielles f, : (B, F2) = (R, B(R)) et f, : (Ey, F1) —

(R, B(R)) sont aussi mesurables.

Preuve 1.3. (a) D’une part, soit B={A C Ey X Ey : A, € Fo}. Mon-
trons que B est une tribu sur Ei X Ejs.

o Comme (E1 X Ey), = Ey € F5 pour tout x € Ey, on a By X Ey € B,

e Si A € B alors pour tout x € Ey on a (A, = (A,)° € Fy et par
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conséquent A¢ € B.

o Soit (An)n>1 une suite d’éléments de B, pour tout x € Ey on a :
(UZSiAn)x = U::i(An)w € Fa,

d'ot UIS A, € B,

D’autre part, st Ay € F1 et Ay € Fo, alors pour tout x € Fy,

Ay, st x € Ay,
(Al X A2):p =

0, sixzé¢ A

de sorte que (A X Ay) € B. Comme F; @ Fy est la plus petite tribu
sur Ey x Ey contenant les rectangles mesurables, on en déduit que
F1® Fy C B, ce qui prouve que A, € Fo. De la méme maniére, on
montre que A, € F.

(b) Soit a € R, comme f : (Ey X Eqy, F1 @ Fs) — (R, B(R)) est mesurable,

alors f~1(Ja, +oo[) € Fy X Fy. Pour tout x € Ey, d’apres (a) on obtient

fz ' (Ja,+ool) = (f(la, +oc))) , € P,

et par conséquent f, : (F2, F2) — (R, B(R)) est mesurable. On fait de

meéme avec f,.



1.2 Mesure produit

Dans cette section, on va construire une mesure sur I’espace produit F; X
E,, on considére dans toute la suite (Ey, Fi,mq) et (Es, Fo, ms) deux espaces

mesurés avec m, et mo des mesures o— finies.

Proposition 1.4. Pour tout A € Fy ® Fo, les applications

(Ey, Fy) — [0, +00]

r — mo(Ay)
et

(Ey, F3) — [0, +00]

y — my(Ay)

sont mesurables

Preuve 1.4. On montre que Uapplication x — my(A,) est mesurable et la
méme démarche s’applique pour la deuxiéme application.

1) Etape 1 : On suppose que ms est une mesure finie et on pose
C={A€ E x Ey:x— my(A,) est F; mesurable}

et soit

P={A1xAy: A € F1,A € Fo}

10



[’ensemble des rectangles mesurables.
(1) Montrons que C contient P.

On a

ma(As), six € A,
mg((Al X Ag)m) =

0, six & A
On a alors ma((Ay X Ag),) = ma(As)1a, (x) qui est mesurable (car
me(Ay) < oo et Ay € Fy), d’ou Uapplication x — mao(A,) est Fi mesurable,
alors P C C.
(1) Montrons que C contient l'algébre engendrée par la semi-algébre
P.
Soit A appartient & Ualgébre engendrée par P, alors A= | A;
telle que A; € P et AjN Ay =0 pour j #7', (A; = (4;)1 x (4;)2)
d’otu

n

Ay = (Z A= (A

=1

alors

n

ma(A;) = ZmQ((Aj)x) =Y ma((A))2)1(ay), ().

=1

D’aprés la partie (i), on trouve que application x — mo(A,) est
aussi mesurable, d’ou le resultat (ii).
(731) Montrons maintenant que Fy @ Fo C C, pour cela il suffit de

prouver que C est une classe monotone.

11



e FixEy,ePCC.

e Soit A, B € C avec A C B, alors ma((B\A),) = ma(B,\Az) =
mo(By) — ma(A,) d’ot Uapplication x — mao((B\A),) est me-
surable comme différence de deux applications mesurables.

o Si (A,)nen une suite d’éléments de C, telle que A,, C A, 11 pour

tout n > 1, alors (An)z, C (Ant1)z, on a done

Ma((UnAn)z) = ma(Un(An)e) = limama((An)e),

d’ot Uapplication © — ma((U,Ay),) est mesurable, en tant que
limite d’applications mesurables.
On obtient alors M(P) = o(P) = F1 @ Fo or M(P) C C alors

F1® Fy C C. Ce qui prouve le théoréeme pour le cas fini.

2) Etape 2 : Supposons que my est une mesure o—finie, on a donc
FEy = U, B,, avec B, C B,11 et mo(B,,) < 400 pour tout n > 1.
La mesure mo(F N By,) est finie pour tout n > 1 et F € Fy, alors
d’apres la partie (1), Uapplication © — mo(E, N B,,) est mesurable

lorsque B € F1 ® Fo. Or par continuité croissante, on a

my(F) = lim,ma(F N By,),

12



en particulier lorsque E € F1 @ Fa, on a

me(E,) = lim,ma(E, N By),

d’ou Uapplication x — mo(FE,) est mesurable en tant que limite d’ap-

plications mesurables.

Proposition 1.5. Il existe une unique mesure positive, notée my ® ms sur

la tribu F1 ® Fo qui vérifie

VA e ./—"1,B - fg,ml ®m2(A X B) = ml(A)mg(B)

De plus, pour tout E € F| ® Fa, on a

mp & mg(E) = mg(Ex)dml = ml(Ey)de.
E1 E2

Preuve 1.5. D’aprés la proposition précédente, pour E € F, ® Fo,

1251 (E) = mQ(Ea:)dml
Eq

et

p2 = [ mi(E,)dms
E>

ont un sens car les applications

x — ma(E,)

13



et

Yy —my (Ey)

sont mesurables.
Montrons maintenant que jy et po sont des mesures :
o 1(0) = pa(0) = 0 car u(0) = [, ma(Bz)dmy = [ ma(B)dmy =
fEl 0dm; = 0.
o 12(0) = [, ma(0,)dmy = [, mi(0)dmy = [, Odmy = 0.

e Soit (E,) une suite d’ensemble deux o deux disjoint d’éléments de

F1® Fs, on a
Ml(UnEn) = m2<UnEn):vdml
Eq
= ma(Un(En)o)dmy = [ > ma((Ey)e)dm
E1 El n
n En n

et cela d’apres le théoréme de convergence monotone.

e De la méme maniére, on obtient
p2(UnEy) = Zﬂz(En)-
Alors

pi(Ax B)= [ mo((A X B);)dm, = /Amg(B)dml = may(B)m4(A),

Ey

14



et de la méme facon, on trouve
ILLQ(A X B) = ml(A)mg(B)

Corollaire 1.1.

[El (/E2 1E(:c,y)dm2(y)) dmy(z) = my@my(E) = /E2 (/El 1E(:c,y)dm1(x)) dma(y).

pour tout £ € F1 ® Fo.

Preuve 1.6. Il est évident que pour tout (x,y) € E1 X FEy on a

lE,T = 1E = 1Ey

et

ml(Ey) = / 1Eydm1
Ey

et

Es

D’apres la proposition précédente, on obtient

m @ ma(E) = [ ma(Edm(o) = [ (f | Ll () ) d)

Ey

15



et

1 ® ma(E) = mm@mmh@wzéb(éfE@wmmmm)dmxw.

Es

1.3 Théorémes de Fubini

Ces Théorémes relient 'intégrale sur la mesure produit et les intégrales

itérées.

Théoréme 1.1. (Théoréeme de Fubini)
Soit f: (Ey X Ey, Fi1 @ Fy) — [0,400] une application mesurable positive,

alors les applications

et

() = : fy(@)dmy ()

sont respectivement Fi et Fo mesurables, et on a les égalités suivantes

tLEf@wﬂw®mﬂxw=EémMM@=E¢@MMW

16



Preuve 1.7. Pour f(z,y) = 1a(z,y) avec A € Fy ® Fa, on a :

M@:Lghwmmw:WMQ

et

wwzél%wwmmzmmm.

D’aprés la proposition précédente, les applications ¢ et 1 sont mesurables |

et on a

méElmeW®mﬂ%w:7m®WM)

_ ma(Az)dmy(z) = [ mi(A,)dma(y)

E1 E2

= ¢(x)dmy (r) = 1/)( )dma(y).
Eq
La linéarité de ['intégrale permet d’étendre le résultat au cas ot f est simple,
le théoréme de convergence monotone permet de conclure pour f positive.
On passe maintenant au cas de fonctions intégrables.

Théoréme 1.2. Soit [ : (E; X Ey, F1 ® Fo) — R une application intégrable
par rapport a la mesure (my ® my), alors les applications ¢ et b sont dé-
finies respectivement my.p.p et mo.p.p , elles sont respectivement my et ms

intégrable et vérifient la relation

léEf@wam®mm@w=E¢wmm> v)ma(y).

17



Preuve 1.8. Si f est intégrable alors

/ f*d(ml ® mg) < o0
FE1xFEso

et

/ fd(m; @ my) < 0.
E1XE2

D’apres le théoreme précédent on a

L readm emen = [ ([ rm) ) dm) <o

d’ou

f+( Ydms(y) < 400, my.p.p

De méme, on montre que fE ~(y)dma(y) < 400, m1.p.p, d’ot

fm( Ydma(y) < 400, my.p.p.

De la méme facon on montre que

fy(z)dmy(z) < 400, mg.p.p.

18



Comme [ f= [fT— [ f~, on obtient que

[ @ dom @ ma)e.p) = [ o(wydm(a)

La deuxieme éqalité se montre de la méme maniére.

1.4 Exercices

Exercice 1.1. Soit

332*1/2

@4y

flz,y) =
0,

1. Calculer diy (ﬁ)

2. Calculer

si0<zx<let0<y<1,((x,y)#(0,0))

stx=1y=0.

([ wasm) e e [ ( [ s@ae) o,

3. L’application f est elle intégrable par rapport A\Q\ ? justifier votre réponse.

Exercice 1.2. Soient (X, A, pn) et (Y,B,m) des espaces mesurés o finis. On
munit X XY de la tribu produit A ® B et de la mesure pu @ m. Soient
hel*(X xY) et feL*X). On note h, Uapplication partielle de h définie

par x — hy(z) = h(z,y).

1- Montrer que pour presque tout y de 'Y Uapplication x — hy(x)f(x) est
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intégrable sur X.
2- Soit g Uapplication définie presque partout par g(y) = [y hy(z) f(x)dp(z).
i) Montrer que g est mesurable (indication : soit E C'Y un ensemble
de mesure finie, montrer que f(x)1g(y) € L*(X xY') ensuite mon-
trer que g(y)1g(y) est mesurable).

ii) Montrer que g est de carré intégrable et que

[ 9P < 1R8I
Y

Exercice 1.3. Soit (X, A, m) un espace mesuré ot m est finie et soit f une
application mesurable et positive.
1) Soit Uensemble A = {(x,t) € X x R"/f(x) > t}. Montrer que A €
A® B(RT).
2) On munit lespace (X x RT, A® B(R")) de la mesure m @ X o A est

la mesure de Lebesque sur RY. Montrer que
/ fdm — / m(f > )AA(b).
X 0

3) Soit Uapplication H de X x R™ dans R définie par
H(z,t) = nt" oo (f(2)).

Montrer que H est mesurable de (X xRT, AQB(R™)) dans (RT, B(R™)).
4) Montrer que [, f"dm = [°nt" 'm(f > t)dA(t).

20



Exercice 1.4. (Supplémentaire) soient (Ey,T), (Eo, ') deuz espaces topolo-
giques, on note T X 7' la topologie produit sur l'espace Fy X Es.
1) Montrer que B(Ey X Ey) D B(E1) ® B(Ey) ot B(E) désigne la tribu

borélienne de l’espace topologique E.

2) On suppose que toute ouvert de T x 7' s’écrit comme réunion au plus

dénombrable de pavés ouvert, montrer qu’on a alors
B(El X EQ) = B(El) X B(Eg)

8) Déduire que B(R?) = B(R) ® B(R).

Exercice 1.5. (Supplémentaire) Soient a et b deuz réels strictement positifs,

telle que a < b. En considérant ['intégrale

[ [ sax@a)
[a,b] /[0,1]

b__ ,.a 1 b
/ — d\(z) = log ( il ) .
[0,1] lOgZ' 1 +a

montrer que
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Chapitre 2

Dérivée de Radon Nycodim

La dérivée de Radon Nycodim permet exprimer une mesure a ’aide d’'une
autre lorsqu’il existe une relation d’absolue continuité entre elles. Elle géné-
ralise la notion de densité et joue un role central en théorie de la mesure, en

probabilité et en statistique.

2.1 Mesures particulieres

Définition 2.1. La mesure m est dite absolument continue par rapport a

la mesure | si

VB € F,I(B) = 0 = m(B) = 0.

On écrit m < .

22



Définition 2.2. Soit A € F, la mesure m est dite concentrée sur A si

VB € F,m(B) = m(B N A).

On dit que A porte la mesure m.

Définition 2.3. Soient m et | deur mesure sur (E,F) telles que m est
concentrée sur A et l concentrée sur B. On dit que m et | sont singuliére si

ANB =0, on écrit mLl et on a

Remarque 2.1. m est concentrée sur A si et seulement si toute partie dis-
jointe de A est négligeable.

En effet, On suppose que m est une mesure concentrée sur A et B C E telle
que BN A =10, alors B C A° et m(A°) =m(A°NA) =0, doa m(B)=0.
Inversement, on a m(B) = m(BNA)+m(BNA®) or BN A® est négligeable
donc m(B) = m(B N A).

Exemple 2.1. 1. La mesure de Dirac 0, et la mesure de Lebesque \ sur

R sont singuliéres car 6, est concentrée sur {x} et A\ est concentrée

sur R\{z}.

2. Soit f € MY (E,F), la mesure m définie par m(A) = [, fdl, pour

tout A € F, est absolument continue par rapport a la mesure .
Proposition 2.1. Ll<<meln<<m=—=I1l+n<m.
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2l<c<metm<g<n—=1<Kn.
S l<<metnlm=I[1n.
4. l<metllm=—1=0.

5. llm etnlm =1+ nlm.

Preuve 2.1. 1. Evidente.
2. FEuvidente.

3. Soit n la mesure qui est portée par A alors m(A) =0 d’ou I(A) = 0,

l est donc concentrée sur A€, alors | Ln.
4. On a selon 3. 111, doul=0.

5. 1l existe A portant | et By portant m avec AN By = 0 et il existe
C portant n et By portant m avec C N By = 0 alors | + n est portée
par AU C et m est portée par By N By avec (AUC) N (BN By) C
(AN B;)) U (CNBy)=0.

2.2 Décomposition d’'une mesure

Théoréme 2.1. (Théoréeme de Radon Nykodim-Lebesgue)

Soient m et | deux mesures o-finies sur (E,F).

1. Sil < m alors il existe une fonction h mesurable et positive sur E
telle que
I(A) = / hdm,VA € F
A

24



h est définie d’une maniére unique m.p.p., h est la dérivée de Radon

. . g dl
Nykodim de | par rapport a m, on lécrit 3 -.

2. Il existe un unique couple de mesures (l1,ly) sur (E,F) telle que
l = ll + l2, ol (ll < m) et (lng),

c’est la décomposition de Lebesque.

Preuve 2.2. o Etude de lexistence
1. Le cas fini
a) Supposons que | et m sont des mesures finies, alors n =14+ m
est une mesure finie, si f € L*(E, B,n) cela implique que f €

LYE,F,n). Comme

Jinia< [ ifian

alors

feLYE,F,I

et d’apres Uinégalité de Cauchy Schwartz

| [ st < [ 1flan < |15)2v/AE).

Ce qui prouve que Uapplication f — [ fdl est une forme li-

néaire et continue sur L>(E, F,n), qui est un espace de Hilbert.
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II existe donc une application g de L*(E,F,n) telle que pour

tout f de

LQ(E,}",n),/fdl:/gfdn.

De méme, on peut trouver une application k de L*(E,F,n)

telle que

Vf e L2(E,.F,n),/fdm:/kfdn. (2.1)

Pour f = 1p telle que B€ F, on a f € L*(E,F,n) et
l(B):/gdn, (2.2)
B

m(B) = /B kdn,

et VB, [pdn = n(B) = [4(g + k)dn, cela implique que g >
0,k >0, car m est une mesure positive et l'unicité donne g +
k=1npp dou0<k<1npp.

Soit A =k~1(]0,1]) alors A°=k~'({0}), on a

m(DB) :/ kdn:/ kdn+/ kdn = m(B N A),
B BnA BnAe

m est donc portée par A. Posons VB € F l'(B) = (BN A)
et I"(B) = (BN A). Il est clair que l = 1"+ 1" et " Lm (I

est portée par A° et m est portée par A). Il reste 4 vérifier que
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I' < m, pour cela posons

g(z) :
L= stz e A

0, six ¢ AC.

D’apres Uéquation (2.1), on a

/ hdm = Malm = / gdn
B Bna k() BNnA

et ’équation (2.2), donne

/ hdm = I(B N A) = I'(B),

ce qui montre que I <K m.
b) En appliquant la décomposition que nous venons de trouver et
son unicité, nous déduisons que si | < m, le couple (1,0) est

une décomposition de | et il existe h telle que
VB e ]-",/ hdm = I(B).
B

2 . Le cas o fini
a) Soit (En) une partition de E avec E = UE,, et Yn,m(E,) < oo
et [(E,) < co. En considérant les mesures traces de m et l a

E, et en utilisant le cas des mesures finies, pour tout n il existe
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A, C En et une application h, tels que h, : E,[0,+00] avec
m(EnNA;) =0 et VB € FI(BNA,) = [54 hadm. En posant
A=U,A, ona ENA°=U,(ENAS) d’ot m(E,NA°) =0 et
en posant pour tout n, h, la restriction de h a E,, alors h est
une application positive et mesurable. Les ensembles (A,,) étant
disjoints, on a (BN A) =1(U,(BNAn)) = > (BN An) =

don f(BmAn) hypdm = f(BﬂAn) > o hndm = fE hdm d’otu
I(B)=1(BNA)+1(BnA°)=1'(B)+1"(B),

avec I'(B) = [, hdm I < m et I"(B) = (BN A°) donc l” est
portée par A° avec m(A°) =0, d’ou I” Lm.
b) Decoule immédiatement de a. comme pour les mesures finies.
o FEtude de l'unicite
1. du couple
Soient (I')1") et (¢, 1) deux décompositions de la mesure l. La
mesure " est concentrée sur I’ensemble L qui est m négligeable et
la mesure " est concentrée sur l’ensemble N qui est m négligeable.
l et u sont donc concentrées sur M = LUN qui est m négligeable.
La propriété 3) entraine que I"(B) = 1I"(BNM) =1(BNM) =
p'(BNM)=p'(B),(B)=UI(BNM° =1(BNM°) =4 (BN
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2. De h Soient h et h deux applications mesurables vérifiant

VA € F,I(A) = /

hdm:/h’dm
A A

montrons que h = h',m.p.p Soit B = {x € Elh(x) — h'(z) > 0}. 1
étant o finie, il existe une suite d’ensembles mesurables (E,,) telle

que E = U, E, et Vn,l(E,) < oo, d’oi

(E,NB) = / hdm = K dm.

E,.NB E,NB

Ces deux intégrales étant finies, on a fEnt hdm — fEnt hdm =0
implique que fEnt h—h'dm = 0(h—h')1g, g = Om.p.p or h—h' >
0 sur B, d’oo m(BN E,) =0 m(B) =m(U,(BNE,))Y . m(BnN
E,) = 0. De la méme maniére, on montre que m{xz/h—h' <0} =0

, donc h =h' ,m.p.p.

2.3 Exercices

Exercice 2.1. Soient (E,B,m) un espace mesuré et A un ensemble mesu-
rable. On définit sur B la mesure ma par ma(B) =m(AN B).

1) Montrer que la mesure my est absolument continue par rapport & m

dm s

et calculer ol
m
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2) Soit D € B, montrer que
ma < mp < m(A\D) = 0.

Exercice 2.2. Soient | et m deux mesures sur (E,B) et soit R la relation

sutvante.
R:Ve>0,30 >0/VB € B,l[(B) <§d = m(B) <e.

1) Montrer que si R est verifiée alors m < 1.
2) montrer que l’implication précédente devient une équivalence si la me-

sure m est finie.

Exercice 2.3. Soit (X, B, m) un espace mesuré et f une application mesu-

rable et positive sur X, on pose

VA € B,I(A) = / fdm.
A

1) Monter que la mesure | est absolument continue par rapport a la me-
sure m.

2) Soit ¢ une application mesurable et positive sur X, montrer que

/Xqﬁdl:/xgbfdm.
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3) Soit A € B, montrer que
(A =0 m{{f#0}NA} =0.

4) Soit p une mesure sur (X, B) tel que m < p. Montrer que | < p et

dl dm
f——up.p

dp 7 du
On pose X =R et B = B(R). Soit A la mesure de Lebesgue sur R et

0o la mesure de Dirac en 0.

i) Eziste t-il une fonction mesurable g telle que
VA € B(R), 5(A) = / g,
A

ii) La mesure de Lebesgue est elle absolument continue par rapport a

la mesure de Dirac ?

Exercice 2.4. Soient o, 0, et p des mesures o-finies sur (R, B(R)) et m
une mesure sur (R? B(R?)) telle que :
do _ ,—L(z
a<petg(z)=e @),
§ < P et 3B(y)=e MW,
m<<a®o et %(x,y) = e™.
dm

Montrer que m < (u® P) et calculer TP

Exercice 2.5. Soit (X,B,m) un espace mesuré o-fini, v et p deur mesures
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positives.

1) Montrer que pour v o-finie, si on a p < v et v <K § alors p < 0 et

dp _ dpdy
a5 dvds PP

2) Montrer que si on a << 0 et v <K 0 alors

dp+v) dp  dv
s a Ta e

3) Montrer que pour v ,o-finie, si 0 et v sont équivalentes alors

dd dv
L1/ spp.
W~ Yo
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Chapitre 3

Différents modes de convergence

Dans tout ce chapitre on se fixe un espace mesuré (X, F,m).

3.1 Types de convergence déja rencontrés.

3.1.1 Convergence uniforme.

On dit que (f,,)nen converge uniformément vers f si
Ve > 0,3ng,Vn > ne, Vo € X @ |fo(x) — f(2)] <e

Autrement dit

lim sup | f,,(z) = f(z)| = 0.

n—oo zeX
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On note f, Y f.

3.1.2 Convergence simple

On dit que (fy,)nen converge simplement vers f si
Ve € X, Ve > 0,Vn > ng,: |fu(x) — f(2)] <e.

Autrement dit

Vo € X, lim |f,(x) = f(@)] =0,

On note f, > f.

3.1.3 Convergence m — p.p

On dit que (f,,)nen converge m — p.p vers f si
AN € N,,,Vz € N°: lim |f,(x) — f(z)| = 0.
n—o0

Autrement dit

AN € Ny, - nh_}rgo Jn(@)/Ne = f(x)/ne.

On note f, —2% f.
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3.1.4 Convergence dans [P, 1 < p < 400

Lorsque f et f, sont dans , on dit que (f,) converge vers f dans si

3.1.5 Convergence dans L™

Lorsque f et f, sont dans L>°, on dit que (f,,) converge vers f dans L>

si lim,, ,o fn — f = 0 Autrement dit

Proposition 3.1. Supposons que la suite (f,)nen soit dans LP avec 1 < p <

+o00o et que m(E) < +o0. Si fp LN f alors f € LP et f, , f

Preuve 3.1. Soit € > 0 et soit ng tel que n < ng alors

sup | fu(@) = f(@)] < 5

zeE

ot d = max(l,m(E)%). Pour tout n < ng, on a

RS

o= fllp = (m(fa—FI"))
m(%lE))

m(E)r < e.

IN
M
bS]

. L
Comme Hf”p < Hf_fnoHp"‘anoHp < +oo d'ot f € LP et f, — f.
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Remarque 3.1. On ne peut pas omelttre la condition m(E) < +oo. en effet
soit (R, B(R), \) un espace mesuré, soit f, = %1[07,1]. 1l est évident que f, “0

et Vn, f, € L' mais f, ne converge pas vers 0 dans LP.

La proposition suivante est une généralisation du théoréme de conver-

gence dominée .
Proposition 3.2. Supposons que la suite (f,)nen soit dans LP,p € [1, 400,

et que f, =22 f et qu'il existe une fonction g positive de LP tel que

vn, |fo] < g,m.p.p

alors f € L, et fp =, f
Preuve 3.2. Les hypotheses Vn, |fo| < g m.p.p et fo =25 f impliquent
|f] < g m.p.p. Il s’en suit que

1A 1lp < Hlgllp < +o0

et donc f € LP.

On a pour tout n,

et donc pour tout n,

|f - fn|p < (2g)p,mpp
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De plus

lim |f — fu|? =0,m.p.p.

n—-+oo

Comme pour tout n, |f — fu|P € L' et (29)P € L', le théoréme de la conver-

gence dominée entraine que

lim /]f—fn|pdm:O

n——+oo

et donc

5 T

3.2 Convergence en mesure

On dit que le suite d’applications mesurables (f,) converge en mesure

vers I'application mesurable f, si
Vo > 0,limm({|f, — f| = }) = 0.

On écrit f, = f.

Proposition 3.3. Soit p € [1,4+o0]. Si f, =, f alors f, = f.
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Preuve 3.3. Posons E, = {|f, — f| > 0}, tel que 6 > 0. On a alors

[ 182 fram = /n\fn—f!”dm

> / Pdm > Pm(E,).

n

Comme lim,, o0 || fr — fll, =0, on a

lim m(E,) =0.

n—-+o0o
i) Sip =400

Proposition 3.4. Supposons que f, — f, alors il existe une sous suite (fre)

telle que fp, PPt

Preuve 3.4. Observons que l’on peut construire une suite d’entiers ny, stric-

tement croissante telle que pour tout k,

m({lfnk—flz ! )gi.

2k

Montrons que f,, PPt

Posons Ay ={|fn, — f| = 55}, on a
EAk =Mk Uj>k A] eF

et
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En effet
+oo +0oo 1
Zm(Ak) < Z? < +00
k=1 k=1

et done

Soit x ¢ limAy. On a 3k, Yk > ko, x ¢ A el donc

k2 ko, o () = F(@)] < 5

Il s’en suit que limy,, o0 fo, (2) = f(x), d'ot fp, mpp, ¢

3.3 Convergence m presque uniforme
On dit que (f,)nen converge m presque uniformément vers f si
Ve > 0,34 € F,m(A°) <e
et fu, LR fia. On écrit alors f, LN ¢
On a évidemment f, LN f=f. 225
Proposition 3.5. Si f,, —2% £, alors f, —2% f.

Preuve 3.5. Soit Ay € F tel que m(Ag) < % et f”\Ag Y, flac. Posons
N = NAyg. Il est claire que m(N) = 0 et si © ¢ N, comme il existe k tel

quex € A5, on a lim,_,o fo(x) = f(z). On en conclut que f, =25 f.
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Dans le cas ol les fonctions sont mesurables et m(E) < +o0, on a la

réciproque

Proposition 3.6. (Théoréme d’Egoroff) Si m(E) < +oo et si les fonctions

fn et f sont mesurables, on a f, m=pp, £, implique que f, m.pu f
Preuve 3.6. Elle résulte de et du proposition suivante

Proposition 3.7. Sim(E) < +oc et si les fonctions f, et f sont mesurables,

alors f, i, f, alors Yoo > 0lim,, oo m (UX_ {|fm — f| = a}) = 0.

Preuve 3.7. Posons pour tout o > 0 et

En(a) = UpZ {|fm — f1 = o}

La condition Vo > 0,lim,, 1 o m (E,(«)) = 0 équivaut a lim,,_,o, m (En(%)) =

0. On a pour tout x € E :

fn ne converge pas versf < Je>0,Yn,Im >n,|fn — f| > €
& Je> 0,z € NN E,(e)
= Trce U6>0 O;Lri% En<€)
1
& xeuNnt E"(E)'
On a donc

1
{x/fn ne converge pas versf} = U Nteg EH(E)
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Comme E,(3) L NwE,(3) et comme m(E) < 400, on am(E,(3)) + m(MaEn(3).

Il vient :

fo =5 [ m({x/ fn ne converge pas versf}) =0

1
& Vk > 1,m(ﬂ:§)En(E))
& Vk1>1, lim m (En(%)) =0.

Proposition 3.8. Si m(E) < +oo, f, ——5 f, alors f, = f.

3.4 Exercices

Exercice 3.1. Soit (f,)n>1 une suite de fonctions définie par

%, st 0 <z<n,
fn(x):

0, stxz>n.

1) montrer que f, converge uniformément vers f.

2) la suite (f,) converge t’elle dans L'(R, B(R),\) # Pourquoi ?

Exercice 3.2. Soit l’espace mesuré (R, B(R), \). Etudier les modes de conver-

gence des suites (gsn)n>1 définies par, pour tout n > 1 et tout s € [0, 400],

_1
s =M ¢ 1[0,n]

(avec la convention que %o =0cet % = +00).
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Exercice 3.3. On muni R de la mesure de Lebesque. Ftudier pour toutes

les suites suivantes la convergence dans LP(R, B(R), \), en mesure et presque

partout.

1) fo= 1[0,%17
2) Jn= ”1[0,%],
3) fn = 1[n,n+1]-

Exercice 3.4. Soit I’espace mesuré ([0,1], B([0,1]), A), et la suite d’applica-
tions numériques (fn)n>1 définies pour tout n € N* par

fn - nl[l 2]-

n’n

1. Montrer que f, LN fetf, EN f.

2. Montrer que f, ne converge pas vers f dans LP([0,1], B([0,1]),\) tel

que p € [1,00].

Exercice 3.5. Soit p une mesure finie sur (E,B) et soient f et (fn)n>1 des
applications mesurables de E dans R telles que f, — f.

Soit g une application de R dans R.

1) Supposons que g est uniformément continue sur R. Montrer que l’appli-
cation g o f, converge en mesure vers g o f.

2) Supposons que g est seulement continue sur R.

a) Démontrer que pour tout k € N* et § > 0, il existe n €]0,1[ tel que pour
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tout entier naturel n, on ait

{lgofu—gofl =0} CH{fu — f=n}U{lf] >k}

b) En déduire que g o f,, converge en mesure vers g o f.

Exercice 3.6. Soit (E,B,m) un espace mesuré fini.

1) Vérifier que pour tout § > 0 et tout n,

1) 1)
m<|f—g|>6>§m(|fn—f|>§)+m(|fn—g|>§).

2) Montrer que si f, —> f et f, —> g alors f = g m.p.p.
3) Inversement, montrer que si f, L f et si g est une application mesurable

finie avec f = g m.p.p. alors f, = g.
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Chapitre 4

Eléments d’analyse de Fourier

L’étude des fonctions périodiques conduit naturellement a la recherche de
représentations analytiques adaptées. Les séries de Fourier constituent une
réponse a ce probléme, sous quelles conditions en adaptant une écriture de

ces fonctions comme une somme infinie de fonction trigonométriques.

4.1 Série trigonométrique

Définition 4.1. On appelle série trigonométrique réelle, toute série de fonc-

tions de la forme

Z (ay cos(kwx) + by sin(kwx))

k=0

avec x € R, a,,b, € R et w > 0.
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4.2 Calcul des coefficients d’une série trigono-
métrique

4.2.1 Calcul de q

On suppose que la série trigonométrique converge uniformément vers S(x)

et intégrable sur [a,a + T, on aura

a+T a+T > a+T
/ S(x)dx = / apdx + Z / (ak cos(nwx) + by, sin(nwx)) ,
a a k=1 Ya

a+T
a

a+T o0 a+T
— / aodx + Z {ak/ cos(nwz)dzr + bk/ sin(nwx)dx} .
a k:1 a
Comme w = 2%, pour tout n > 1, on obtient

a+T T 2 a+T
/ cos(nwx)dr = {—sin(n—wx)}

2mn T 1,
T 2
= 5 {sm(n%(a +7T)) — sm(n—a)}
T ( 2m ) ( 2m )
= 5 [sin(nora) —sin(n—a
= 0,

de la méme facon, pour tout n > 1 on montre que

a+T
/ sin(nwzx)dz =0
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de plus

a+T
/ apdx = Tag.
a

On en déduit que

1 a+T
ag = T/a S(x)da.

4.2.2 Calcul de qa,, et b,

On a
S(x) =ap+ Z ay, cos(kwx) + by sin(kwx)

k=1

alors

S(x) cos(nwz) = ag cos(nwx)+ Y  [ay, cos(kwz)cos(nwz) + by sin(kwz)cos(nwx)]

WE

B
Il
—_

et

o

S(x)sin(nwz) = agsin(nwz) +Z a, cos(kwzx) sin(nwx) + by, sin(kwx) sin(nwzx)] .
k=1

D’aprés la convergence uniforme, on obtient

a+T a+T
/ S(z) cos(nwz)dr = ao/ cos(nwx) dx+2ak/ cos(kwzx)cos(nwz)dx

k=1

+ Zbk/sm (kwz)cos(nwz)dz,
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a+T a+T & a+T
/ S(z) sin(nwz)dr = ao/ sin(nwz) + Z ak/ cos(kwz) sin(nwz)dx
a a k=1 a

o0 a+T
+ Zbk/ sin(kwz) sin(nwz),
k=1 @

or )
a+T 0, sin#k,
/ cos(kwz) cos(nwzx)dx =
¢ L sin=k.
|3, sin
(
a+T 0, sin#k,
/ sin(kwz) sin(nwz)dr =
¢ %, sin=k.
\

a+T
/ sin(nwz) cos(kwz)dz = 0.

On déduit alors, pour tout n > 1

a+T 2 %
Ay, = T/ S(x)cos(nwz)dx = —/ S(x)cos(nwz)dz,

2 a+T 2 %
b, = T/ S(x)sin(nwz)dr = T/ S(z)sin(nwz)dz.

4.3 Dévloppemet en série de Fourier

Définition 4.2. On appelle série de Fourier associée a f, la série trigono-

métrique
o

ap + Z a, cos(nwz) + b, sin(nwz),

n=1
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ol
1 a+T
ao = T/a f(z)dz,

pour tout n > 1

a+T %
a, = %/ﬂ ’ f(z)cos(nwz)dr = %/‘QT f(z)cos(nwz)dz,

b, = T /aa+Tf(x)sin(nwx)d$ = %/; f(z)sin(nwzx)dx.

Remarque 4.1. St [ est paire, on a

(

a =2 [? f(z)dx,

T
pour tout n > 1,a, = 7 [7 f(x) cos(nwz)dz,

pour tout n > 1,b, = 0.
\

Si f est impaire, on a

pour tout n > 1,a, =0,

T
pour tout n > 1,b, = 7 [? f(x)sin(nwz)dz.

En particulier, si f est 2w périodique, alors
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si f est paire, on a

p

Ay = %foﬂ— f(ilf)dilf,

pour tout n > 1,a, = 2 [ f(x) cos(nx)dz,

pour tout n > 1,b, = 0.
\

Si f est impaire, on a

pour tout n > 0,a, =0,

pour tout n > 1,b, = 2 [ f(z) sin(na)dz.

4.4 Série de Fourier complexe

Soit f une fonction periodique déveloper en série de Fourier
+oo
f(z) =ao+ Z (a,, cos(nwx) + by, sin(nw))

k=1

avec x € R, w > 0 et a,,b, € R pour tout n dans N

d’aprés les relations d’Fuler

nWT —inwx
+e

cos(nwzx) = ‘ 5 :

einwz _ e—inwm

sin(nwx) = , ,
2
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on obtient

einwx + e—inwz einwa: _ e—inwz
flz) =ao+ Z (a + 5 )

On pose

On obtient

2

Qo inwz n — iby, —inwa dn T iby,
D) + Z (e Y +e T) .

¢, = an—zbn’
P an—;zbn7
ag
Co — -
\

“+o0

+oo
f(.’L') =co+ Z(Cneinwx + Cinefinwx) — Z cneinwx’

n=1 n=-—00

cette derniére série est la forme complexe d’une série trigonométrique. Les

coefficients ¢, et c¢_, peuvent étre exprimer par des intégrales, en effet, pour

n # 0, on a

Cn

a, — by,
2
2

X f/a f(z) [cos(nwzx) — isin(nwx)] dz

1
2
1 a+T )
= 7 / fz)e ™ dx.
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De la méme maniére, on a

Remarque 4.2. Si f posséde une dérivée f' intégrable sur [0, 2], alors

en(f') = incn(f),

a(f) =5 0% f'(t)e~™tdt, une intégration par parties donne

en(f') = 5 [f (e ™5™ + ZintT[f (t)e ™ dt = inc,(f).

Plus généralement, étant donné une application périodique de période 2w
et intégrable sur [0, 27|, quelles sont les conditions qui assurent la convergence
de la série de Fourier, associée a cette fonction, dans quel sens, retrouve-t-
on f comme limite? Le théoréme de Dirichlet répond a cette question, en

utilisant la notion de fonction de classe C'* par morceaux.

Définition 4.3. f est dite de classe C' par morceauz sur intervalle I =
la, b] si les conditions suivantes sont satisfaites.
i) f est continue et contindment dérivable en tout point de I sauf en un
nombre fini de points (t;) de I.
i) En tout point t;, (t; # aett; #0b), f(t;)y et f(t;)_ existent dans R, de
plus f(a)+ et f(b)_ existent (f(x)+ etf(z)— sont respectivement les

limites a droite et & gauche de f au point x).
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iii) En tout point t;, (t; # aett; #b), f'(t;))+ et f'(t;)— existent dans R,
de plus f'(a), et f'(b)_ existent (f'(x)s et f'(x)_ sont respectivement

les dérivées a droite el a gauche de f au point x).

Plus généralement si f est définie sur R, on dit que f est de classe C*
par morceaux, si sa restriction a tout intervalle compact est de classe C* par
morceaux. Si de plus f est périodique de période 27 alors f est de classe C*

par morceaux sur tout intervalle de longueur 27.

Proposition 4.1. (Théoreme de Dirichlet) Si [ est périodique, de période
27 et si f est de classe C' par morceaur sur R, alors la série de Fourier

associée a f est convergente sur R et on a

Vt € R, %[f(t)_ + f(t)y] = a0+ i(an cosnt + b, sinnt).

n=1

En particulier si f est continue au point ¢, alors

f(t) =ao+ Z(an cosnt + by, sinnt).

n=1

Cas général : période T L’étude d’une application périodique de Période
T, se raméne a ’étude d’'une application de période 27, en effet soit f une
application périodique, de période T et soit g définie par g(t) = f(;) ol
w = QT” alors g est périodique de période 27. La série de Fourier associée a g

est

ag + Z(an cosnt + b, sinnt)

n=1
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et la série associée a f est
o0
ag + E (an, cos nwt + b, sin nwt).
n=1

ol

1 a+2m 2 a+T
" syt =7 [

1 a+2m 9 a+T

ap = —/ g(t)cos(nt)dt = T/ f(t)cos(nwt)dt,
™ a a
1 a+T 2 a+T

b, = —/ g(t)sin(nt)dt = f/ g(t)sin(nwt)dt.
™ a a

En particulier le théoréme de Dirichlet est toujours valable, c’est & dire si f

est périodique, de période T, et si f est de classe C! par morceaux alors

%[f(t)— + f(t)4+] = ao + i(an cos nwt + by, sin nwt).

n=1

4.5 Egalité de Parseval

Théoréme 4.1. Soit f une application périodique de période T, telle que
f(z) =ao+ Z an, cos(nwz) + by, sin(nwx),

n=1

alors [’égalité de Parseval est

1

a+T 1 o0
b P =de 3> )
a n=1

93



4.6 Transformée de Fourier

Définition 4.4. Soit f € L'Y(R,\) on appelle transformée de Fourier de la

fonction f la fonction f de R dans C définie par

¢ 1 —itx
fla) = o= [ rneax),

x € R. Certains auteurs définissent la transformée de Fourier de f par

fa) = / F(t)e 2,

cette intégrale a un sens car |f(x)e | = | f(x)| d’on

¢ 1 —itx L —itx
| f(0)] :ﬁ!/Rf(fEk dr| < M/R!f(x)e |dz < oo.

Exemple 4.1. Calculons la transformée de Fourier de

o) = el

24



f) = —= [ f@e s

1 )
_ = —(zt—a)a:d
= e x
Vam /R
1 )
+ e—(zt—a)xdx
V2T /R
11
a \2ma — it
1 1
+ =
V2ma+ it
B 1 2a
 Vor \a2+#2
Propriétés
Proposition 4.2. 1) Soient f et g deuz fonctions admettant une trans-

formée de Fourier. Alors, Vo, g € C,

af(t) + B9(t)

est la transformée de Fourier de

af(t)+ By(t).

2) Soit f une fonction admettant une transformée de Fourier. Pour \ €

R*, f(A\t) admet également une transformée de Fourier telle que

- 1

fO) = = f(

! 3

> =+
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3) Soit f une fonction admettant une transformée de Fourier. pour toute
T €R, g(x) = f(x — 1), alors g admet également une transformée de

Fourier et

g(t) = e f ().

4) Soit f une fonction admettant une transformée de Fourier. Pour tout

a€R,

fa(t) = e f(t)
admet également une transformée de Fourier et

N

falt) = f(t = a).

Preuve 4.1. 1) Posons h(t) = af(t) 4+ Bg(t), alors

h(t) = \/%/Raf(a:)e_mdx
1 —itx

+ o= / Bg(x)e " da

= \/%_W/Rf(q:)emdx

+ \/%/Rg(x)e_mdx
= af(t)+Ba(t)

o6



2) Supposons que X\ # 0 et posons s = \t, alors

Fon) = \/% / FOw)e " dz

—1392 1

:m/f DYk
1t
—Wf(x)

3) Par le changement de variable suivant , on trouve

o0 = L [ s

1 .
- = /R et f (i — 7)de
_ \/%_ﬂ./Rezt(erT)f(x)dx
= e_mf(t).

4) On a

fa(t) — \/ﬂ/ za:z:f —z:cdx

\/—Q_W/Rel(t“ T f(z)dx
= f(t—a).
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4.7 Transformée de Fourier d’une dérivée

Proposition 4.3. Soit f une fonction continue par morceaux, admettant
une transformée de Fourier. Supposons de plus que limy_,, f(t) =0, alors la

dérivée [’ de f admel une transformée et

f(@) =iz f(x).

Preuve 4.2. Comme f' est continue, par une intégration par parties, on

obtient le résultat voulu.

4.8 Inversion de la transformée de Fourier

4.8.1 Formule d’inversion

Définition 4.5. Soit f € LY(R), on appelle transformée de Fourier inverse

de f la fonction définit pour tout w de R par

FAH)0) = <= [ e flayde

Théoréme 4.2. Soit f une fonction absolument intégrable et C1 par mor-
ceaur sur R, alors l'intégrale de Fourier fR f(t)e(_“”t)””dt converge pour chaque

teR et
1

F)+ 1),
V@)

2

/ Flw)e™Dduw =
R

o8



En particulier, si f est continue en t, alors

1) = ﬁ [ fwetman,

4.8.2 Conséquence de la formule d’inversion

Corollaire 4.1. Soient f et g deux fonctions intégrables et de classe C' par
morceaur sur R.
Si f(w) = §(w) pour tout w de R alors f = g en tout points t ot f et g sont

continues.

Preuve 4.3. Soit t un point ot f et g sont toutes deux continues. Puisque

f(w) = §(w), i s’ensuit par la formule d’inversion que

f(t) _ \/(IQ_W)IR f(w)€(2iﬂ-wt)xdw
1

fR g(w)e(Ziﬂwt)xdw

(2m)

= g(t).

4.9 Exercices

Exercice 4.1. Soit [ Uapplication périodique, de période 21 définie sur
[—m, 7| par

f(x) = ||

1. Tracer le graphe de f sur [—3m, 3.
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2. Calculer les coefficients de Fourier associée a f.
3. Ecrire la série de Fourier de f et étudier sa convergence.

4. Déduire les sommes suivantes : )y, <, (%T. et D s (2n+1)

Exercice 4.2. Soit f l"application périodique, de période 27 définie par

fla) =2

si|z] <.
1. Tracer le graphe de f sur [—4m, 4]
2. Déterminer la série de Fourier de f.

3. Calculer f[_ﬂ . wldr et déduire la valeur de Y - 7.

4. Montrer que

:—+4Z " cos(nx)

n>1

et déduire Y, o) 75 et Y5, n2) .

Exercice 4.3. Soit a € R*, calculer les coefficients de Fourier réles de la

fonction périodique et continue par morceaux définie ci dessus

fo(x) = exp(ax)

sur [0, 2.
Exercice 4.4. Soit [ [lapplication périodique, de période 2m définie sur
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[—m, 7] par
T—z, s10<zx<m,

fz) =

T4z, si—m<ax<O.
1. Tracer le graphe de f sur [—3m,3m].
2. Calculer les coefficients de Fourier associée a f.
3. Ecrire la série de Fourier de f et étudier sa convergence.

4. Calculer la somme suivante : Y, -, —(znil)z-

2

5. Montrer que Y, -, a’ = .

Exercice 4.5. Soit f Uapplication périodique, de période m définie sur [0, 7|
par
N\ 2
SO
fy=1- (2
1. Tracer le graphe de f sur [—2m,2m].

2. Calculer les coefficients de Fourier associée a f.

3. Ecrire la série de Fourier de f et étudier sa convergence.

. -1 n+1
4. Calculer les sommes swivantes : Y, o1 23, > ( 732 ety o -

Exercice 4.6. Soit f une fonction périodique de période T = 2, telle que :

x stz € |0,1],
fz) =
5 six € [1,2].

1. Dessiner le graphe de f sur Uintervalle [—4,4].
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2. Calculer les coefficients de Fourier de f.

3. Etudier la convergence de la série de Fourier sur ’intervalle [0, 2[.

4. En déduire la somme )y~ (Qn_lH)Q.

Exercice 4.7. On se donne une fonction périodique de période 21 définie

sur [—m, m| comme suit

—x, s10<x <,
flz) =
x, st—m <x<O.
1. Tracer le graphe de f sur [—4m, 4r].
2. Calculer les coefficients de Fourier associée a f.

3. Ecrire la série de Fourier de f et étudier sa convergence.

4. Calculer la somme suivante : Y -, —(Qn—li-l)Q'

2

5. Montrer que Y, . a2 = .

Exercice 4.8. Soit f lapplication périodique, de période m définie sur [0, 7|
par
7\ 2
-2,
fay=1-(2
1. Tracer le graphe de f sur [—2m,2m].

2. Calculer les coefficients de Fourier associée a f.

3. Ecrire la série de Fourier de f et étudier sa convergence.

. —1 n+1
4. Calculer les sommes suivantes : > o =5, D51 ( 732 et > oq -
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