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Les étudiants de troisième année licence de l'université frères Mentouri de

Constantine, a qui s'adresse ce cours, ont déjà étudié la théorie de la mesure

et d'intégration, en particulier les espaces mesurés, les inetégrales et pouvoir

intervertir passage à la limite et l'intégrale, sous des conditions acceptables,

la relation entre l'intégrale de Lebesgue et de Riemann.

Dans ce polycopié, dans le premier chapitre, nous présentons l'espace mesué

produit et ces propriétés notamment les Thórèmes de Fubini et quelques ap-

plications utiles concernant l'intégrations multiples.

Nous présentons, par la suite, quelques mesure particulières et la décompo-

sition d'une mesure en fonction de deux mesures. Nous donnons une étude

détaillée concernant les di�érents mode de convergences en particulier la

convergence presque partout, la convergence en mesure et la relation entre

eux.

Le quatrième chapitre est consacré à l'étude des séries et de la transformation

de Fourier.

Comme ce polycopié est un cours, nous avons pris le parti de démontrer

presque tous les résultats de fa�on complète. Aprés chaque chapitre, comme

application, le cours est illustré par des nombreux exercices.
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Chapitre 1

Produit de mesures

1.1 Produit d'espaces mesurables

Dé�nition 1.1. (Tribu produit)

Soient (E1,F1) et (E2,F2) deux espaces mesurables, on désigne par F1 ⊗F2

la tribu sur E1 × E2 engendrée par les rectangles mesurables, c'est à dire

F1 ⊗F2 = σ(F1 ×F2) = σ({A1 × A2 : A1 ∈ F1, A2 ∈ F2})

Remarque 1.1. • L'ensemble des rectangles mesurables

{A1 × A2 : A1 ∈ F1, A2 ∈ F2}

n'est pas une tribu en général.
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• Le produit de la tribu borélienne sur R par elle même donne la tribu

borélienne sur R2, on a donc B(R)⊗B(R) = B(R2). (Voir dans exer-

cices supplémentaires)

Proposition 1.1. La tribu F1 ⊗ F2 est la plus petite tribu sur E1 × E2 qui

rende mesurable les deux projections canoniques :

π1 : (E1 × E2,F1 ⊗F2)→ (E1,F1), π1(x, y) = x

π2 : (E1 × E2,F1 ⊗F2)→ (E2,F2), π2(x, y) = y.

Preuve 1.1. π1 et π2 sont mesurables car pour tout A1 ∈ F1 et A2 ∈ F2 on a

π−11 (A1) = {(x, y) ∈ E1 × E2 : x ∈ A1} = A1 × E2 ∈ F1 ⊗F2

et

π−12 (A2) = E1 × A2 ∈ F1 ⊗F2.

Soit G une tribu sur E1 × E2 rendant mesurable les applications π1 et π2.

Pour tout A1 ∈ F1 et A2 ∈ F2,

A1 × A2 = (A1 × E2) ∩ (E1 × A2) = π−11 (A1) ∩ π−12 (A2) ∈ G,

ce qui prouve que F1 ×F2 ⊂ G, d'où F1 ⊗F2 ⊂ G.
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Proposition 1.2. Soit (E,M), (E1,F1) et (E2,F2) trois espaces mesurables

et soit l'application f = (f1, f2) : (E,M)→ (E1 × E2,F1 ⊗ F2), alors f est

mesurable si et seulement si

f1 : (E,M)→ (E1,F1),

et

f2 : (E,M)→ (E2,F2),

sont mesurables.

Preuve 1.2. Si f est mesurable, alors f1 = π1 ◦f et f2 = π2 ◦f le sont aussi

comme composition de fonctions mesurables.

Inversement si f1 et f2 sont mesurables, alors pour tout A1 ∈ F1 et A2 ∈ F2

on a

f−1(A1 × A2) = f−1((A1 × E2) ∩ (E1 × A2))

= f−1(π−11 (A1) ∩ π−12 (A2))

= f−1(π−11 (A1)) ∩ f−1(π−12 (A2))

= (π1 ◦ f)−1(A1) ∩ (π2 ◦ f)−1(A2)

= f−11 (A1) ∩ f−12 (A2) ∈M.

Alors comme F1 ⊗F2 = σ(F1 ×F2), f est mesurable.

Dé�nition 1.2. (Les sections)
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Pour toute partie A de E1 × E2 et tout x ∈ E1, on dé�nit la section de A

selon x, l'ensemble

Ax = {y ∈ E2 : (x, y) ∈ A}.

De la même manière, on dé�nit la section de A selon y, par l'ensemble

Ay = {x ∈ E1 : (x, y) ∈ A}.

Exemple 1.1. • Pour E1 = E2 = R, on a

([1, 3]× [−4,−2])x=2 = [−4,−2], ([1, 3]× [−4,−2])x=5 = ∅.

([1, 3]× [−4,−2])y=−3 = [1, 3], ([1, 3]× [−4,−2])y=0 = ∅.

• Généralement, soit A1 ∈ F1, A2 ∈ F2 des mesurables de E1 et de E2,

alors

(A1 × A2)x =


A2, si x ∈ A1,

∅, si x /∈ A1.

(A1 × A2)y =


A1, si y ∈ A2,

∅, si y /∈ A2.

Dé�nition 1.3. (les applications partielles)

Soit l'application f : E1 × E2 → F . Pour x ∈ E1, y ∈ E2, on de�nit les
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applications partielles

fx : E2 → F

fx(y) = f(x, y)

et

fy : E1 → F

fy(x) = f(x, y).

La tribu produit F1 ⊗F2 assure la mesurabilité des sections et les appli-

cations partielles. En e�et, on a

Proposition 1.3. Soient (E1,F1) et (E2,F2) deux espaces mesurables.

(a) Soit A ∈ F1⊗F2, alors pour tout x ∈ E1 et y ∈ E2, on a Ax ∈ F2 et

Ay ∈ F1.

(b) Si l'application f : (E1×E2,F1⊗F2)→ (R,B(R)) est mesurable, alors

les applications partielles fx : (E2,F2)→ (R,B(R)) et fy : (E1,F1)→

(R,B(R)) sont aussi mesurables.

Preuve 1.3. (a) D'une part, soit B = {A ⊂ E1 × E2 : Ax ∈ F2}. Mon-

trons que B est une tribu sur E1 × E2.

• Comme (E1×E2)x = E2 ∈ F2 pour tout x ∈ E1, on a E1×E2 ∈ B.

• Si A ∈ B alors pour tout x ∈ E1 on a (Ac)x = (Ax)
c ∈ F2 et par
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conséquent Ac ∈ B.

• Soit (An)n≥1 une suite d'éléments de B, pour tout x ∈ E1 on a :

(∪+∞n=1An)x = ∪+∞
n=1(An)x ∈ F2,

d'où ∪+∞n=1An ∈ B.

D'autre part, si A1 ∈ F1 et A2 ∈ F2, alors pour tout x ∈ E1,

(A1 × A2)x =


A2, si x ∈ A1,

∅, si x /∈ A1.

de sorte que (A1 × A2) ∈ B. Comme F1 ⊗ F2 est la plus petite tribu

sur E1 × E2 contenant les rectangles mesurables, on en déduit que

F1 ⊗ F2 ⊂ B, ce qui prouve que Ax ∈ F2. De la même manière, on

montre que Ay ∈ F1.

(b) Soit a ∈ R, comme f : (E1×E2,F1⊗F2)→ (R,B(R)) est mesurable,

alors f−1(]a,+∞[) ∈ F1×F2. Pour tout x ∈ E1, d'après (a) on obtient

f−1x (]a,+∞[) =
(
f−1(]a,+∞[)

)
x
∈ F2,

et par conséquent fx : (E2,F2)→ (R,B(R)) est mesurable. On fait de

même avec fy.
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1.2 Mesure produit

Dans cette section, on va construire une mesure sur l'espace produit E1×

E2, on considère dans toute la suite (E1,F1,m1) et (E2,F2,m2) deux espaces

mesurés avec m1 et m2 des mesures σ− �nies.

Proposition 1.4. Pour tout A ∈ F1 ⊗F2, les applications

(E1,F1)→ [0,+∞]

x→ m2(Ax)

et

(E2,F2)→ [0,+∞]

y → m1(Ay)

sont mesurables

Preuve 1.4. On montre que l'application x → m2(Ax) est mesurable et la

même démarche s'applique pour la deuxième application.

1) Étape 1 : On suppose que m2 est une mesure �nie et on pose

C = {A ∈ E1 × E2 : x→ m2(Ax) est F1 mesurable}

et soit

P = {A1 × A2 : A1 ∈ F1, A2 ∈ F2}
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l'ensemble des rectangles mesurables.

(i) Montrons que C contient P .

On a

m2((A1 × A2)x) =


m2(A2), si x ∈ A1,

0, si x /∈ A1.

On a alors m2((A1×A2)x) = m2(A2)1A1(x) qui est mesurable (car

m2(A2) <∞ et A1 ∈ F1), d'où l'application x→ m2(Ax) est F1 mesurable,

alors P ⊂ C.

(ii) Montrons que C contient l'algèbre engendrée par la semi-algèbre

P .

Soit A appartient à l'algèbre engendrée par P, alors A =
∑n

i=1Aj

telle que Aj ∈ P et Aj∩Aj′ = ∅ pour j 6= j′, ((Aj = (Aj)1× (Aj)2)

d'où

Ax = (
n∑
i=1

Aj)x =
n∑
i=1

(Aj)x,

alors

m2(Ax) =
n∑
i=1

m2((Aj)x) =
n∑
i=1

m2((Aj)2)1(Aj)1(x).

D'aprés la partie (i), on trouve que l'application x → m2(Ax) est

aussi mesurable, d'où le resultat (ii).

(iii) Montrons maintenant que F1 ⊗ F2 ⊂ C, pour cela il su�t de

prouver que C est une classe monotone.
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• E1 × E2 ∈ P ⊂ C.

• Soit A,B ∈ C avec A ⊂ B, alors m2((B\A)x) = m2(Bx\Ax) =

m2(Bx)−m2(Ax) d'où l'application x → m2((B\A)x) est me-

surable comme di�érence de deux applications mesurables.

• Si (An)n∈N une suite d'éléments de C, telle que An ⊂ An+1 pour

tout n ≥ 1, alors (An)x1 ⊂ (An+1)x, on a donc

m2((∪nAn)x) = m2(∪n(An)x) = limnm2((An)x),

d'où l'application x→ m2((∪nAn)x) est mesurable, en tant que

limite d'applications mesurables.

On obtient alors M(P) = σ(P) = F1 ⊗ F2 or M(P) ⊂ C alors

F1 ⊗F2 ⊂ C. Ce qui prouve le théorème pour le cas �ni.

2) Étape 2 : Supposons que m2 est une mesure σ−�nie, on a donc

E2 = ∪nBn, avec Bn ⊂ Bn+1 et m2(Bn) < +∞ pour tout n ≥ 1.

La mesure m2(F ∩ Bn) est �nie pour tout n ≥ 1 et F ∈ F2, alors

d'après la partie (1), l'application x → m2(Ex ∩ Bn) est mesurable

lorsque E ∈ F1 ⊗F2. Or par continuité croissante, on a

m2(F ) = limnm2(F ∩Bn),
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en particulier lorsque E ∈ F1 ⊗F2, on a

m2(Ex) = limnm2(Ex ∩Bn),

d'où l'application x→ m2(Ex) est mesurable en tant que limite d'ap-

plications mesurables.

Proposition 1.5. Il existe une unique mesure positive, notée m1 ⊗m2 sur

la tribu F1 ⊗F2 qui véri�e

∀A ∈ F1, B ∈ F2,m1 ⊗m2(A×B) = m1(A)m2(B).

De plus, pour tout E ∈ F1 ⊗F2, on a

m1 ⊗m2(E) =

∫
E1

m2(Ex)dm1 =

∫
E2

m1(Ey)dm2.

Preuve 1.5. D'après la proposition précédente, pour E ∈ F1 ⊗F2,

µ1(E) =

∫
E1

m2(Ex)dm1

et

µ2 =

∫
E2

m1(Ey)dm2

ont un sens car les applications

x→ m2(Ex)
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et

y → m1(Ey)

sont mesurables.

Montrons maintenant que µ1 et µ2 sont des mesures :

• µ1(∅) = µ2(∅) = 0 car µ1(∅) =
∫
E1
m2(∅x)dm1 =

∫
E1
m2(∅)dm1 =∫

E1
0dm1 = 0.

• µ2(∅) =
∫
E2
m1(∅y)dm2 =

∫
E2
m1(∅)dm2 =

∫
E2

0dm2 = 0.

• Soit (En) une suite d'ensemble deux à deux disjoint d'éléments de

F1 ⊗F2, on a

µ1(∪nEn) =

∫
E1

m2(∪nEn)xdm1

=

∫
E1

m2(∪n(En)x)dm1 =

∫
E1

∑
n

m2((En)x)dm1

=
∑
n

∫
E1

m2(En)xdm1 =
∑
n

µ1(En)

et cela d'après le théorème de convergence monotone.

• De la même manière, on obtient

µ2(∪nEn) =
∑
n

µ2(En).

Alors

µ1(A×B) =

∫
E1

m2((A×B)x)dm1 =

∫
A

m2(B)dm1 = m2(B)m1(A),
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et de la même façon, on trouve

µ2(A×B) = m1(A)m2(B).

Corollaire 1.1.

∫
E1

(∫
E2

1E(x, y)dm2(y)

)
dm1(x) = m1⊗m2(E) =

∫
E2

(∫
E1

1E(x, y)dm1(x)

)
dm2(y).

pour tout E ∈ F1 ⊗F2.

Preuve 1.6. Il est évident que pour tout (x, y) ∈ E1 × E2 on a

1Ex = 1E = 1Ey

et

m1(Ey) =

∫
E1

1Eydm1

et

m2(Ex) =

∫
E2

1Exdm2.

D'après la proposition précédente, on obtient

m1 ⊗m2(E) =

∫
E1

m2(Ex)dm1(x) =

∫
E1

(∫
E2

1E(x, y)dm2(y)

)
dm1(x)
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et

m1 ⊗m2(E) =

∫
E2

m1(Ey)dm2(y) =

∫
E2

(∫
E1

1E(x, y)dm1(x)

)
dm2(y).

1.3 Théorèmes de Fubini

Ces Théorèmes relient l'intégrale sur la mesure produit et les intégrales

itérées.

Théorème 1.1. (Théorème de Fubini)

Soit f : (E1 × E2,F1 ⊗ F2) → [0,+∞] une application mesurable positive,

alors les applications

φ(x) =

∫
E2

fx(y)dm2(y)

et

ψ(y) =

∫
E1

fy(x)dm1(x)

sont respectivement F1 et F2 mesurables, et on a les égalités suivantes

∫
E1×E2

f(x, y)d(m1 ⊗m2)(x, y) =

∫
E1

φ(x)dm1(x) =

∫
E2

ψ(y)dm2(y).

16



Preuve 1.7. Pour f(x, y) = 1A(x, y) avec A ∈ F1 ⊗F2, on a :

φ(x) =

∫
E2

1Ax(y)dm2(y) = m2(Ax)

et

ψ(y) =

∫
E1

1Ay(x)dm1(x) = m1(Ay).

D'aprés la proposition précédente, les applications φ et ψ sont mesurables ,

et on a

∫
E1×E2

1A(x, y)d(m1 ⊗m2)(x, y) = m1 ⊗m2(A)

=

∫
E1

m2(Ax)dm1(x) =

∫
E2

m1(Ay)dm2(y)

=

∫
E1

φ(x)dm1(x) =

∫
E2

ψ(y)dm2(y).

La linéarité de l'intégrale permet d'étendre le résultat au cas où f est simple,

le théorème de convergence monotone permet de conclure pour f positive.

On passe maintenant au cas de fonctions intégrables.

Théorème 1.2. Soit f : (E1 × E2,F1 ⊗F2)→ R une application intégrable

par rapport a la mesure (m1 ⊗ m2), alors les applications φ et ψ sont dé-

�nies respectivement m1.p.p et m2.p.p , elles sont respectivement m1 et m2

intégrable et véri�ent la relation

∫
E1×E2

f(x, y)d(m1 ⊗m2)(x, y) =

∫
E1

φ(x)dm1(x) =

∫
E2

ψ(y)dm2(y).
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Preuve 1.8. Si f est intégrable alors

∫
E1×E2

f+d(m1 ⊗m2) <∞

et ∫
E1×E2

f−d(m1 ⊗m2) <∞.

D'après le théorème précédent on a

∫
E1×E2

f+(x, y)d(m1 ⊗m2)(x, y) =

∫
E1

(∫
E2

f+
x (y)dm2(y)

)
dm1(x) <∞

d'où ∫
E2

f+
x (y)dm2(y) < +∞,m1.p.p

De même, on montre que
∫
E2
f−x (y)dm2(y) < +∞,m1.p.p, d'où

∫
E2

fx(y)dm2(y) < +∞,m1.p.p.

De la même façon on montre que

∫
E1

fy(x)dm1(x) < +∞,m2.p.p.
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Comme
∫
f =

∫
f+ −

∫
f−, on obtient que

∫
f(x, y)d(m1 ⊗m2)(x, y) =

∫
φ(x)dm1(x).

La deuxième égalité se montre de la même manière.

1.4 Exercices

Exercice 1.1. Soit

f(x, y) =


x2−y2

(x2+y2)2
, si 0 ≤ x ≤ 1 et 0 ≤ y ≤ 1, ((x, y) 6= (0, 0))

0, si x = y = 0.

1. Calculer d
dy

(
y

x2+y2

)
.

2. Calculer

∫ (∫
fx(y)dλ(y)

)
dλ(x) et

∫ (∫
fy(x)dλ(x)

)
dλ(y).

3. L'application f est elle intégrable par rapport λ⊗λ ? justi�er votre réponse.

Exercice 1.2. Soient (X,A, µ) et (Y,B,m) des espaces mesurés σ �nis. On

munit X × Y de la tribu produit A ⊗ B et de la mesure µ ⊗ m. Soient

h ∈ L2(X × Y ) et f ∈ L2(X). On note hy l'application partielle de h dé�nie

par x→ hy(x) = h(x, y).

1- Montrer que pour presque tout y de Y l'application x→ hy(x)f(x) est
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intégrable sur X.

2- Soit g l'application dé�nie presque partout par g(y) =
∫
X
hy(x)f(x)dµ(x).

i) Montrer que g est mesurable (indication : soit E ⊂ Y un ensemble

de mesure �nie, montrer que f(x)1E(y) ∈ L2(X×Y ) ensuite mon-

trer que g(y)1E(y) est mesurable).

ii) Montrer que g est de carré intégrable et que

∫
Y

|g|2 ≤ ||f ||22||h||22.

Exercice 1.3. Soit (X,A,m) un espace mesuré où m est �nie et soit f une

application mesurable et positive.

1) Soit l'ensemble A = {(x, t) ∈ X × R+/f(x) ≥ t}. Montrer que A ∈

A⊗ B(R+).

2) On munit l'espace (X ×R+,A⊗B(R+)) de la mesure m⊗ λ où λ est

la mesure de Lebesgue sur R+. Montrer que

∫
X

fdm =

∫ ∞
0

m(f ≥ t)dλ(t).

3) Soit l'application H de X × R+ dans R+ dé�nie par

H(x, t) = ntn−11[t,∞[(f(x)).

Montrer que H est mesurable de (X×R+,A⊗B(R+)) dans (R+,B(R+)).

4) Montrer que
∫
X
fndm =

∫∞
0
ntn−1m(f ≥ t)dλ(t).
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Exercice 1.4. (Supplémentaire) soient (E1, τ), (E2, τ
′) deux espaces topolo-

giques, on note τ × τ ′ la topologie produit sur l'espace E1 × E2.

1) Montrer que B(E1 × E2) ⊃ B(E1) ⊗ B(E2) où B(E) désigne la tribu

borélienne de l'espace topologique E.

2) On suppose que toute ouvert de τ × τ ′ s'écrit comme réunion au plus

dénombrable de pavés ouvert, montrer qu'on a alors

B(E1 × E2) = B(E1)⊗ B(E2).

3) Déduire que B(R2) = B(R)⊗ B(R).

Exercice 1.5. (Supplémentaire) Soient a et b deux réels strictement positifs,

telle que a < b. En considèrant l'intégrale

∫
[a,b]

∫
[0,1]

xydλ(x)dλ(y),

montrer que ∫
[0,1]

xb − xa

log x
dλ(x) = log

(
1 + b

1 + a

)
.
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Chapitre 2

Dérivée de Radon Nycodim

La dérivée de Radon Nycodim permet exprimer une mesure a l'aide d'une

autre lorsqu'il existe une relation d'absolue continuité entre elles. Elle géné-

ralise la notion de densité et joue un rôle central en théorie de la mesure, en

probabilité et en statistique.

2.1 Mesures particulieres

Dé�nition 2.1. La mesure m est dite absolument continue par rapport a

la mesure l si

∀B ∈ F , l(B) = 0 =⇒ m(B) = 0.

On écrit m� l.
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Dé�nition 2.2. Soit A ∈ F , la mesure m est dite concentrée sur A si

∀B ∈ F ,m(B) = m(B ∩ A).

On dit que A porte la mesure m.

Dé�nition 2.3. Soient m et l deux mesure sur (E,F) telles que m est

concentrée sur A et l concentrée sur B. On dit que m et l sont singulière si

A ∩B = ∅, on écrit m⊥l et on a

m(B) = l(A) = 0.

Remarque 2.1. m est concentrée sur A si et seulement si toute partie dis-

jointe de A est négligeable.

En e�et, On suppose que m est une mesure concentrée sur A et B ⊂ E telle

que B ∩ A = ∅, alors B ⊂ Ac et m(Ac) = m(Ac ∩ A) = 0, d'où m(B) = 0.

Inversement, on a m(B) = m(B ∩A) +m(B ∩Ac) or B ∩Ac est négligeable

donc m(B) = m(B ∩ A).

Exemple 2.1. 1. La mesure de Dirac δx et la mesure de Lebesgue λ sur

R sont singulières car δx est concentrée sur {x} et λ est concentrée

sur R\{x}.

2. Soit f ∈ M+(E,F), la mesure m dé�nie par m(A) =
∫
A
fdl, pour

tout A ∈ F , est absolument continue par rapport à la mesure l.

Proposition 2.1. 1. l� m et n� m =⇒ l + n� m.
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2. l� m et m� n =⇒ l� n.

3. l� m et n⊥m =⇒ l⊥n.

4. l� m et l⊥m =⇒ l = 0.

5. l⊥m et n⊥m =⇒ l + n⊥m.

Preuve 2.1. 1. Èvidente.

2. Èvidente.

3. Soit n la mesure qui est portée par A alors m(A) = 0 d'où l(A) = 0,

l est donc concentrée sur Ac, alors l⊥n.

4. On a selon 3. l⊥l, d'où l = 0.

5. Il existe A portant l et B1 portant m avec A ∩ B1 = ∅ et il existe

C portant n et B2 portant m avec C ∩ B2 = ∅ alors l + n est portée

par A ∪ C et m est portée par B1 ∩ B2 avec (A ∪ C) ∩ (B1 ∩ B2) ⊂

(A ∩B1) ∪ (C ∩B2) = ∅.

2.2 Décomposition d'une mesure

Théorème 2.1. (Théorème de Radon Nykodim-Lebesgue)

Soient m et l deux mesures σ-�nies sur (E,F).

1. Si l � m alors il existe une fonction h mesurable et positive sur E

telle que

l(A) =

∫
A

hdm,∀A ∈ F
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h est dé�nie d'une manière unique m.p.p., h est la dérivée de Radon

Nykodim de l par rapport à m, on l'écrit dl
dm
.

2. Il existe un unique couple de mesures (l1, l2) sur (E,F) telle que

l = l1 + l2, où (l1 � m) et (l2⊥m),

c'est la décomposition de Lebesgue.

Preuve 2.2. • Étude de l'existence

1. Le cas �ni

a) Supposons que l et m sont des mesures �nies, alors n = l +m

est une mesure �nie, si f ∈ L2(E,B, n) cela implique que f ∈

L1(E,F , n). Comme

∫
|f |dl ≤

∫
|f |dn

alors

f ∈ L1(E,F , l)

et d'après l'inégalité de Cauchy Schwartz

|
∫
fdl| ≤

∫
|f |dn ≤ ||f ||2

√
n(E).

Ce qui prouve que l'application f →
∫
fdl est une forme li-

néaire et continue sur L2(E,F , n), qui est un espace de Hilbert.
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Il existe donc une application g de L2(E,F , n) telle que pour

tout f de

L2(E,F , n),
∫
fdl =

∫
gfdn.

De même, on peut trouver une application k de L2(E,F , n)

telle que

∀f ∈ L2(E,F , n),
∫
fdm =

∫
kfdn. (2.1)

Pour f = 1B telle que B ∈ F , on a f ∈ L2(E,F , n) et

l(B) =

∫
B

gdn, (2.2)

m(B) =

∫
B

kdn,

et ∀B,
∫
B
dn = n(B) =

∫
B
(g + k)dn, cela implique que g ≥

0, k ≥ 0, car m est une mesure positive et l'unicité donne g +

k = 1, n.p.p. d'où 0 ≤ k ≤ 1, n.p.p.

Soit A = k−1(]0, 1[) alors Ac = k−1({0}), on a

m(B) =

∫
B

kdn =

∫
B∩A

kdn+

∫
B∩Ac

kdn = m(B ∩ A),

m est donc portée par A. Posons ∀B ∈ F l′(B) = l(B ∩ A)

et l′′(B) = l(B ∩ Ac). Il est clair que l = l′ + l′′ et l′′⊥m (l�

est portée par Ac et m est portée par A). Il reste à véri�er que
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l′ � m, pour cela posons

h(x) =


g(x)
k(x)

, si x ∈ A

0, si x /∈ Ac.

D'après l'équation (2.1), on a

∫
B

hdm =

∫
B∩A

g(x)

k(x)
dm =

∫
B∩A

gdn

et l'équation (2.2), donne

∫
B

hdm = l(B ∩ A) = l′(B),

ce qui montre que l′ � m.

b) En appliquant la décomposition que nous venons de trouver et

son unicité, nous déduisons que si l � m, le couple (l, 0) est

une décomposition de l et il existe h telle que

∀B ∈ F ,
∫
B

hdm = l(B).

2 . Le cas σ �ni

a) Soit (En) une partition de E avec E = ∪En et ∀n,m(En) <∞

et l(En) < ∞. En considèrant les mesures traces de m et l à

En et en utilisant le cas des mesures �nies, pour tout n il existe

27



An ⊂ En et une application hn tels que hn : En[0,+∞] avec

m(En∩Acn) = 0 et ∀B ∈ F l(B∩An) =
∫
B∩An hndm. En posant

A = ∪nAn on a E ∩Ac = ∪n(E ∩Acn) d'où m(En ∩Ac) = 0 et

en posant pour tout n, hn la restriction de h à En alors h est

une application positive et mesurable. Les ensembles (An) étant

disjoints, on a l(B ∩ A) = l(∪n(B ∩ An)) =
∑

n l(B ∩ An) =∑
n

∫
(B∩An) hndm =

∫
(B∩An)

∑
n hndm =

∫
E
hdm d'où

l(B) = l(B ∩ A) + l(B ∩ Ac) = l′(B) + l′′(B),

avec l′(B) =
∫
B
hdm l′ � m et l′′(B) = l(B ∩ Ac) donc l′′ est

portée par Ac avec m(Ac) = 0, d'où l′′⊥m.

b) Decoule immédiatement de a. comme pour les mesures �nies.

• Etude de l'unicite

1. du couple

Soient (l′, l′′) et (µ′, µ′′) deux décompositions de la mesure l. La

mesure l′′ est concentrée sur l'ensemble L qui est m négligeable et

la mesure µ′′ est concentrée sur l'ensemble N qui est m négligeable.

l et µ sont donc concentrées sur M = L∪N qui est m négligeable.

La propriété 3) entraine que l′′(B) = l′′(B ∩M) = l(B ∩M) =

µ′′(B ∩M) = µ′′(B), l′(B) = l′(B ∩M c) = l(B ∩M c) = µ′(B ∩

M c) = µ′(B).
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2. De h Soient h et h deux applications mesurables véri�ant

∀A ∈ F , l(A) =
∫
A

hdm =

∫
A

h′dm

montrons que h = h′,m.p.p Soit B = {x ∈ E|h(x)− h′(x) > 0}. l

étant σ �nie, il existe une suite d'ensembles mesurables (En) telle

que E = ∪nEn et ∀n, l(En) <∞, d'où

l(En ∩B) =

∫
En∩B

hdm =

∫
En∩B

h′dm.

Ces deux intégrales étant �nies, on a
∫
En∩B hdm−

∫
En∩B h

′dm = 0

implique que
∫
En∩B h−h

′dm = 0(h−h′)1En∩B = 0m.p.p or h−h′ >

0 sur B, d'où m(B ∩ En) = 0 m(B) = m(∪n(B ∩ En))
∑
m(B ∩

En) = 0. De la même manière, on montre que m{x/h−h′ < 0} = 0

, donc h = h′,m.p.p.

2.3 Exercices

Exercice 2.1. Soient (E,B,m) un espace mesuré et A un ensemble mesu-

rable. On dé�nit sur B la mesure mA par mA(B) = m(A ∩B).

1) Montrer que la mesure mA est absolument continue par rapport à m

et calculer dmA
dm

.
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2) Soit D ∈ B, montrer que

mA � mD ⇔ m(A\D) = 0.

Exercice 2.2. Soient l et m deux mesures sur (E,B) et soit R la relation

suivante.

R : ∀ε > 0,∃δ > 0/∀B ∈ B, l(B) < δ =⇒ m(B) < ε.

1) Montrer que si R est veri�ée alors m� l.

2) montrer que l'implication précédente devient une équivalence si la me-

sure m est �nie.

Exercice 2.3. Soit (X,B,m) un espace mesuré et f une application mesu-

rable et positive sur X, on pose

∀A ∈ B, l(A) =
∫
A

fdm.

1) Monter que la mesure l est absolument continue par rapport à la me-

sure m.

2) Soit φ une application mesurable et positive sur X, montrer que

∫
X

φdl =

∫
X

φfdm.
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3) Soit A ∈ B, montrer que

l(A) = 0⇔ m{{f 6= 0} ∩ A} = 0.

4) Soit µ une mesure sur (X,B) tel que m� µ. Montrer que l� µ et

dl

dµ
= f

dm

dµ
, µp.p

On pose X = R et B = B(R). Soit λ la mesure de Lebesgue sur R et

δ0 la mesure de Dirac en 0.

i) Existe t-il une fonction mesurable g telle que

∀A ∈ B(R), δ0(A) =
∫
A

gdλ.

ii) La mesure de Lebesgue est elle absolument continue par rapport à

la mesure de Dirac ?

Exercice 2.4. Soient α, δ, µ et p des mesures σ-�nies sur (R,B(R)) et m

une mesure sur (R2,B(R2)) telle que :

α� µ et dα
dµ
(x) = e−L(x),

δ � P et dδ
dP

(y) = e−M(y),

m� α⊗ δ et dm
d(α⊗δ)(x, y) = exy.

Montrer que m� (µ⊗ P ) et calculer dm
d(µ⊗P )

.

Exercice 2.5. Soit (X,B,m) un espace mesuré σ-�ni, ν et µ deux mesures
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positives.

1) Montrer que pour ν σ-�nie, si on a µ� ν et ν � δ alors µ� δ et

dµ

dδ
=
dµ

dν

dν

dδ
, δ.p.p.

2) Montrer que si on a µ� δ et ν � δ alors

d(µ+ ν)

dδ
=
dµ

dδ
+
dν

dδ
, δ.p.p

3) Montrer que pour ν ,σ-�nie, si δ et ν sont équivalentes alors

dδ

dν
= 1/

dν

dδ
, δ.p.p.
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Chapitre 3

Di�érents modes de convergence

Dans tout ce chapitre on se �xe un espace mesuré (X,F ,m).

3.1 Types de convergence déjà rencontrés.

3.1.1 Convergence uniforme.

On dit que (fn)n∈N converge uniformément vers f si

∀ε > 0,∃n0,∀n ≥ n0,∀x ∈ X : |fn(x)− f(x)| < ε.

Autrement dit

lim
n→∞

sup
x∈X
|fn(x)− f(x)| = 0.
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On note fn
U−→ f.

3.1.2 Convergence simple

On dit que (fn)n∈N converge simplement vers f si

∀x ∈ X, ∀ε > 0,∀n ≥ n0, : |fn(x)− f(x)| < ε.

Autrement dit

∀x ∈ X, lim
n→∞

|fn(x)− f(x)| = 0.

On note fn
S−→ f.

3.1.3 Convergence m− p.p

On dit que (fn)n∈N converge m− p.p vers f si

∃N ∈ Nm,∀x ∈ N c : lim
n→∞

|fn(x)− f(x)| = 0.

Autrement dit

∃N ∈ Nm : lim
n→∞

fn(x)/Nc = f(x)/Nc .

On note fn
m−p.p−−−→ f.
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3.1.4 Convergence dans Lp, 1 ≤ p < +∞

Lorsque f et fn sont dans , on dit que (fn) converge vers f dans si

limn→∞ fn − f = 0

3.1.5 Convergence dans L∞

Lorsque f et fn sont dans L∞, on dit que (fn) converge vers f dans L∞

si limn→∞ fn − f = 0 Autrement dit

∃N ∈ Nm : lim
n→∞

fn(x)/Nc = f(x)/Nc .

Proposition 3.1. Supposons que la suite (fn)n∈N soit dans Lp avec 1 ≤ p <

+∞ et que m(E) < +∞. Si fn
U−→ f alors f ∈ Lp et fn

Lp−→ f.

Preuve 3.1. Soit ε > 0 et soit n0 tel que n ≤ n0 alors

sup
x∈E
|fn(x)− f(x)| <

ε

d

où d = max(1,m(E)
1
p ). Pour tout n ≤ n0, on a

||fn − f ||p = (m(|fn − f |p))
1
p

≤
(
m(

εp

dp
1E)

) 1
p

=
ε

d
m(E)

1
p ≤ ε.

Comme ||f ||p ≤ ||f − fn0||p + ||fn0 ||p < +∞ d'où f ∈ Lp et fn
Lp−→ f.
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Remarque 3.1. On ne peut pas omettre la condition m(E) < +∞. en e�et

soit (R,B(R), λ) un espace mesuré, soit fn = 1
n
1[0,n]. Il est évident que fn

U−→ 0

et ∀n, fn ∈ L1 mais fn ne converge pas vers 0 dans Lp.

La proposition suivante est une généralisation du théorème de conver-

gence dominée .

Proposition 3.2. Supposons que la suite (fn)n∈N soit dans Lp, p ∈ [1,+∞[,

et que fn
m.p.p−−−→ f et qu'il existe une fonction g positive de Lp tel que

∀n, |fn| ≤ g,m.p.p

alors f ∈ Lp et fn
Lp−→ f.

Preuve 3.2. Les hypothèses ∀n, |fn| ≤ g m.p.p et fn
m.p.p−−−→ f impliquent

|f | ≤ g m.p.p. Il s'en suit que

||f ||p ≤ ||g||p < +∞

et donc f ∈ Lp.

On a pour tout n,

|f − fn| ≤ |f |+ |fn|

et donc pour tout n,

|f − fn|p ≤ (2g)p,m.p.p.
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De plus

lim
n→+∞

|f − fn|p = 0,m.p.p.

Comme pour tout n, |f − fn|p ∈ L1 et (2g)p ∈ L1, le théorème de la conver-

gence dominée entraine que

lim
n→+∞

∫
|f − fn|pdm = 0

et donc

fn
Lp−→ f.

3.2 Convergence en mesure

On dit que le suite d'applications mesurables (fn) converge en mesure

vers l'application mesurable f , si

∀δ > 0, limm({|fn − f | ≥ δ}) = 0.

On écrit fn
m−→ f.

Proposition 3.3. Soit p ∈ [1,+∞]. Si fn
Lp−→ f alors fn

m−→ f.
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Preuve 3.3. Posons En = {|fn − f | ≥ δ}, tel que δ > 0. On a alors

∫
|fn − f |pdm ≥

∫
En

|fn − f |pdm

≥
∫
En

δpdm ≥ δpm(En).

Comme limn→∞ ||fn − f ||p = 0, on a

lim
n→+∞

m(En) = 0.

ii) Si p = +∞

Proposition 3.4. Supposons que fn
m−→ f, alors il existe une sous suite (fnk)

telle que fnk
m.p.p.−−−→ f.

Preuve 3.4. Observons que l'on peut construire une suite d'entiers nk stric-

tement croissante telle que pour tout k,

m

(
{|fnk − f | ≥

1

2k
}
)
≤ 1

2k
.

Montrons que fnk
m.p.p.−−−→ f.

Posons Ak = {|fnk − f | ≥ 1
2k
}, on a

limAk = ∩k ∪j≥k Aj ∈ F

et

m(limAk) = 0.
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En e�et
+∞∑
k=1

m(Ak) ≤
+∞∑
k=1

1

2k
< +∞

et donc

m(∪j≥kAj) ≤
∑
j≥k

m(Aj) −−−→
k+∞

0

Soit x /∈ limAk. On a ∃k0,∀k ≥ k0, x /∈ Ak et donc

∀k ≥ k0, |fnk(x)− f(x)| <
1

2k
.

Il s'en suit que limnk→∞ fnk(x) = f(x), d'où fnk
m.p.p.−−−→ f.

3.3 Convergence m presque uniforme

On dit que (fn)n∈N converge m presque uniformément vers f si

∀ε > 0,∃A ∈ F ,m(Ac) < ε

et fn|A
U−→ f|A. On écrit alors fn

m.p.u−−−→ f.

On a évidemment fn
L∞−−→ f ⇒ fn

m.p.u−−−→ f.

Proposition 3.5. Si fn
m.p.u−−−→ f, alors fn

m.p.p−−−→ f.

Preuve 3.5. Soit Ak ∈ F tel que m(Ak) <
1
k
et fn|Ac

k

U−→ f|Ack . Posons

N = ∩Ak. Il est claire que m(N) = 0 et si x /∈ N, comme il existe k tel

quex ∈ Ack, on a limn→∞ fn(x) = f(x). On en conclut que fn
m.p.p−−−→ f.
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Dans le cas où les fonctions sont mesurables et m(E) < +∞, on a la

réciproque

Proposition 3.6. (Théorème d'Egoro�) Si m(E) < +∞ et si les fonctions

fn et f sont mesurables, on a fn
m−p.p−−−→ f, implique que fn

m.p.u−−−→ f.

Preuve 3.6. Elle résulte de et du proposition suivante

Proposition 3.7. Si m(E) < +∞ et si les fonctions fn et f sont mesurables,

alors fn
m.p.u−−−→ f, alors ∀α > 0 limn→∞m (∪∞m=n{|fm − f | ≥ α}) = 0.

Preuve 3.7. Posons pour tout α > 0 et

En(α) = ∪+∞m=n{|fm − f | ≥ α}.

La condition ∀α > 0, limn→+∞m (En(α)) = 0 équivaut à limn→∞m
(
En(

1
k
)
)
=

0. On a pour tout x ∈ E :

fn ne converge pas versf ⇔ ∃ε > 0, ∀n,∃m ≥ n, |fm − f | ≥ ε

⇔ ∃ε > 0, x ∈ ∩+∞n=0En(ε)

⇔ x ∈ ∪ε>0 ∩+∞n=0 En(ε)

⇔ x ∈ ∪+∞k=1 ∩
+∞
n=0 En(

1

k
).

On a donc

{x/fn ne converge pas versf} = ∪+∞k=1 ∩
+∞
n=0 En(

1

k
).
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Comme En( 1k ) ↓ ∩nEn(
1
k
) et commem(E) < +∞, on am(En(

1
k
)) ↓ m(∩nEn( 1k ).

Il vient :

fn
m−p.p.−−−−→ f ⇔ m({x/fn ne converge pas versf}) = 0

⇔ ∀k ≥ 1,m(∩+∞n=0En(
1

k
))

⇔ ∀k1 ≥ 1, lim
n→∞

m

(
En(

1

k
)

)
= 0.

Proposition 3.8. Si m(E) < +∞, fn
m−p.p.−−−−→ f, alors fn

m−→ f.

3.4 Exercices

Exercice 3.1. Soit (fn)n≥1 une suite de fonctions dé�nie par

fn(x) =


1
n
, si 0 ≤ x ≤ n,

0, si x > n.

1) montrer que fn converge uniformément vers f .

2) la suite (fn) converge t'elle dans L1(R,B(R), λ) ? Pourquoi ?

Exercice 3.2. Soit l'espace mesuré (R,B(R), λ). Etudier les modes de conver-

gence des suites (gs,n)n≥1 dé�nies par, pour tout n ≥ 1 et tout s ∈ [0,+∞],

gs,n = n−
1
s 1[0,n]

(avec la convention que 1
+∞ = 0 et 1

0
= +∞).

41



Exercice 3.3. On muni R de la mesure de Lebesgue. Etudier pour toutes

les suites suivantes la convergence dans Lp(R,B(R), λ), en mesure et presque

partout.

1) fn = 1[0, 1
n
],

2) fn = n1[0, 1
n
],

3) fn = 1[n,n+1].

Exercice 3.4. Soit l'espace mesuré ([0, 1],B([0, 1]), λ), et la suite d'applica-

tions numériques (fn)n≥1 dé�nies pour tout n ∈ N∗ par

fn = n1[ 1
n
, 2
n
].

1. Montrer que fn
λ.p.p−−→ f et fn

λ−→ f.

2. Montrer que fn ne converge pas vers f dans Lp
(
[0, 1],B([0, 1]), λ

)
tel

que p ∈ [1,∞].

Exercice 3.5. Soit µ une mesure �nie sur (E,B) et soient f et (fn)n≥1 des

applications mesurables de E dans R telles que fn
m−→ f .

Soit g une application de R dans R.

1) Supposons que g est uniformément continue sur R. Montrer que l'appli-

cation g ◦ fn converge en mesure vers g ◦ f.

2) Supposons que g est seulement continue sur R.

a) Démontrer que pour tout k ∈ N∗ et δ > 0, il existe η ∈]0, 1[ tel que pour
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tout entier naturel n, on ait

{|g ◦ fn − g ◦ f | ≥ δ} ⊆ {fn − f ≥ η} ∪ {|f | > k}.

b) En déduire que g ◦ fn converge en mesure vers g ◦ f.

Exercice 3.6. Soit (E,B,m) un espace mesuré �ni.

1) Véri�er que pour tout δ > 0 et tout n,

m (|f − g| > δ) ≤ m

(
|fn − f | >

δ

2

)
+m

(
|fn − g| >

δ

2

)
.

2) Montrer que si fn
m−→ f et fn

m−→ g alors f = g m.p.p.

3) Inversement, montrer que si fn
m−→ f et si g est une application mesurable

�nie avec f = g m.p.p. alors fn
m−→ g.
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Chapitre 4

Éléments d'analyse de Fourier

L'étude des fonctions périodiques conduit naturellement à la recherche de

représentations analytiques adaptées. Les séries de Fourier constituent une

réponse a ce problème, sous quelles conditions en adaptant une écriture de

ces fonctions comme une somme in�nie de fonction trigonométriques.

4.1 Série trigonométrique

Dé�nition 4.1. On appelle série trigonométrique réelle, toute série de fonc-

tions de la forme
∞∑
k=0

(ak cos(kwx) + bk sin(kwx))

avec x ∈ R, an, bn ∈ R et w > 0.
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4.2 Calcul des coe�cients d'une série trigono-

métrique

4.2.1 Calcul de a0

On suppose que la série trigonométrique converge uniformément vers S(x)

et intégrable sur [a, a+ T ], on aura

∫ a+T

a

S(x)dx =

∫ a+T

a

a0dx+
∞∑
k=1

∫ a+T

a

(ak cos(nwx) + bk sin(nwx)) ,

=

∫ a+T

a

a0dx+
∞∑
k=1

[
ak

∫ a+T

a

cos(nwx)dx+ bk

∫ a+T

a

sin(nwx)dx

]
.

Comme w = 2π
T
, pour tout n ≥ 1, on obtient

∫ a+T

a

cos(nwx)dx =

[
T

2πn
sin(n

2π

T
x)

]a+T
a

=
T

2πn

[
sin(n

2π

T
(a+ T ))− sin(n

2π

T
a)

]
=

T

2πn

[
sin(n

2π

T
a)− sin(n

2π

T
a)

]
= 0,

de la même façon, pour tout n ≥ 1 on montre que

∫ a+T

a

sin(nwx)dx = 0
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de plus ∫ a+T

a

a0dx = Ta0.

On en déduit que

a0 =
1

T

∫ a+T

a

S(x)dx.

4.2.2 Calcul de an et bn

On a

S(x) = a0 +
∞∑
k=1

ak cos(kwx) + bk sin(kwx)

alors

S(x) cos(nwx) = a0 cos(nwx)+
∞∑
k=1

[ak cos(kwx)cos(nwx) + bk sin(kwx)cos(nwx)]

et

S(x) sin(nwx) = a0 sin(nwx)+
∞∑
k=1

[ak cos(kwx) sin(nwx) + bk sin(kwx) sin(nwx)] .

D'après la convergence uniforme, on obtient

∫ a+T

a

S(x) cos(nwx)dx = a0

∫ a+T

a

cos(nwx)dx+
∞∑
k=1

ak

∫ a+T

a

cos(kwx)cos(nwx)dx

+
∞∑
k=1

bk

∫
sin(kwx)cos(nwx)dx,
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∫ a+T

a

S(x) sin(nwx)dx = a0

∫ a+T

a

sin(nwx) +
∞∑
k=1

ak

∫ a+T

a

cos(kwx) sin(nwx)dx

+
∞∑
k=1

bk

∫ a+T

a

sin(kwx) sin(nwx),

or ∫ a+T

a

cos(kwx) cos(nwx)dx =


0, si n 6= k,

T
2
, si n = k.

∫ a+T

a

sin(kwx) sin(nwx)dx =


0, si n 6= k,

T
2
, si n = k.

∫ a+T

a

sin(nwx) cos(kwx)dx = 0.

On déduit alors, pour tout n ≥ 1

an =
2

T

∫ a+T

a

S(x)cos(nwx)dx =
2

T

∫ T
2

−T
2

S(x)cos(nwx)dx,

bn =
2

T

∫ a+T

a

S(x)sin(nwx)dx =
2

T

∫ T
2

−T
2

S(x)sin(nwx)dx.

4.3 Dévloppemet en série de Fourier

Dé�nition 4.2. On appelle série de Fourier associée à f , la série trigono-

métrique

a0 +
∞∑
n=1

an cos(nwx) + bn sin(nwx),
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où

a0 =
1

T

∫ a+T

a

f(x)dx,

pour tout n ≥ 1

an =
2

T

∫ a+T

a

f(x)cos(nwx)dx =
2

T

∫ T
2

−T
2

f(x)cos(nwx)dx,

bn =
2

T

∫ a+T

a

f(x)sin(nwx)dx =
2

T

∫ T
2

−T
2

f(x)sin(nwx)dx.

Remarque 4.1. Si f est paire, on a


a0 =

2
T

∫ T
2

0
f(x)dx,

pour tout n ≥ 1, an = 4
T

∫ T
2

0
f(x) cos(nwx)dx,

pour tout n ≥ 1, bn = 0.

Si f est impaire, on a


pour tout n ≥ 1, an = 0,

pour tout n ≥ 1, bn = 4
T

∫ T
2

0
f(x) sin(nwx)dx.

En particulier, si f est 2π périodique, alors
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si f est paire, on a


a0 =

1
π

∫ π
0
f(x)dx,

pour tout n ≥ 1, an = 2
π

∫ π
0
f(x) cos(nx)dx,

pour tout n ≥ 1, bn = 0.

Si f est impaire, on a


pour tout n ≥ 0, an = 0,

pour tout n ≥ 1, bn = 2
π

∫ π
0
f(x) sin(nx)dx.

4.4 Série de Fourier complexe

Soit f une fonction periodique déveloper en série de Fourier

f(x) = a0 +
+∞∑
k=1

(an cos(nwx) + bn sin(nwx))

avec x ∈ R, w > 0 et an, bn ∈ R pour tout n dans N

d'après les relations d'Euler

cos(nwx) =
einwx + e−inwx

2
,

sin(nwx) =
einwx − e−inwx

2i
,
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on obtient

f(x) = a0 +
∑(

an
einwx + e−inwx

2
+ bn

einwx − e−inwx

2i

)

a0
2

+
∑(

einwx
an − ibn

2
+ e−inwx

an + ibn
2

)
.

On pose


cn = an−ibn

2
,

c−n = an+ibn
2

,

c0 =
a0
2
.

On obtient

f(x) = c0 +
+∞∑
n=1

(cne
inwx + c−ne

−inwx) =
+∞∑

n=−∞

cne
inwx,

cette dernière série est la forme complexe d'une série trigonométrique. Les

coe�cients cn et c−n peuvent être exprimer par des intégrales, en e�et, pour

n 6= 0, on a

cn =
an − ibn

2

=
1

2
× 2

T

∫ a+T

a

f(x) [cos(nwx)− i sin(nwx)] dx

=
1

T

∫ a+T

a

f(x)e−inwxdx.
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De la même manière, on a

c−n =
1

T

∫ a+T

a

f(x)einwxdx.

Remarque 4.2. Si f possède une dérivée f ′ intégrable sur [0, 2π], alors

cn(f
′) = incn(f),

en e�et

cn(f
′) = 1

2π

∫ 2π

0
f ′(t)e−intdt, une intégration par parties donne

cn(f
′) = 1

2π
[f(t)e−int]2π0 + in

2π
int2π0 [f(t)e−intdt = incn(f).

Plus généralement, étant donné une application périodique de période 2π

et intégrable sur [0, 2π], quelles sont les conditions qui assurent la convergence

de la série de Fourier, associée à cette fonction, dans quel sens, retrouve-t-

on f comme limite ? Le théorème de Dirichlet répond à cette question, en

utilisant la notion de fonction de classe C1 par morceaux.

Dé�nition 4.3. f est dite de classe C1 par morceaux sur l'intervalle I =

[a, b] si les conditions suivantes sont satisfaites.

i) f est continue et continûment dérivable en tout point de I sauf en un

nombre �ni de points (ti) de I.

ii) En tout point ti, (ti 6= aetti 6= b), f(ti)+ et f(ti)− existent dans R, de

plus f(a)+ et f(b)− existent (f(x) + etf(x)− sont respectivement les

limites à droite et à gauche de f au point x).
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iii) En tout point ti, (ti 6= aetti 6= b), f ′(ti)+ et f ′(ti)− existent dans R,

de plus f ′(a)+ et f ′(b)− existent (f ′(x)+ et f ′(x)− sont respectivement

les dérivées à droite et à gauche de f au point x).

Plus généralement si f est dé�nie sur R, on dit que f est de classe C1

par morceaux, si sa restriction à tout intervalle compact est de classe C1 par

morceaux. Si de plus f est périodique de période 2π alors f est de classe C1

par morceaux sur tout intervalle de longueur 2π.

Proposition 4.1. (Théorème de Dirichlet) Si f est périodique, de période

2π et si f est de classe C1 par morceaux sur R, alors la série de Fourier

associée à f est convergente sur R et on a

∀t ∈ R, 1
2
[f(t)− + f(t)+] = a0 +

∞∑
n=1

(an cosnt+ bn sinnt).

En particulier si f est continue au point t, alors

f(t) = a0 +
∞∑
n=1

(an cosnt+ bn sinnt).

Cas général : période T L'étude d'une application périodique de Période

T, se ramène à l'étude d'une application de période 2π, en e�et soit f une

application périodique, de période T et soit g dé�nie par g(t) = f( t
w
) où

w = 2π
T

alors g est périodique de période 2π. La série de Fourier associée à g

est

a0 +
∞∑
n=1

(an cosnt+ bn sinnt)
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et la série associée à f est

a0 +
∞∑
n=1

(an cosnwt+ bn sinnwt).

où

a0 =
1

2π

∫ a+2π

a

g(t)dt =
2

T

∫ a+T

a

f(t)dt,

an =
1

π

∫ a+2π

a

g(t)cos(nt)dt =
2

T

∫ a+T

a

f(t)cos(nwt)dt,

bn =
1

π

∫ a+T

a

g(t)sin(nt)dt =
2

T

∫ a+T

a

g(t)sin(nwt)dt.

En particulier le théorème de Dirichlet est toujours valable, c'est à dire si f

est périodique, de période T, et si f est de classe C1 par morceaux alors

1

2
[f(t)− + f(t)+] = a0 +

∞∑
n=1

(an cosnwt+ bn sinnwt).

4.5 Égalité de Parseval

Théorème 4.1. Soit f une application périodique de période T , telle que

f(x) = a0 +
∞∑
n=1

an cos(nwx) + bn sin(nwx),

alors l'égalité de Parseval est

1

T

∫ a+T

a

f 2(x)dx = a20 +
1

2

∞∑
n=1

(a2n + b2n).
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4.6 Transformée de Fourier

Dé�nition 4.4. Soit f ∈ L1(R, λ) on appelle transformée de Fourier de la

fonction f la fonction f̂ de R dans C dé�nie par

f̂(x) =
1√
2π

∫
R
f(t)e−itxdλ(t),

x ∈ R. Certains auteurs dé�nissent la transformée de Fourier de f par

f̂(x) =

∫
R
f(t)e−2πitxdt,

cette intégrale a un sens car |f(x)e−itx| = |f(x)| d'où

|f̂(t)| = 1√
2π
|
∫
R
f(x)e−itxdx| ≤ 1√

2π

∫
R
|f(x)e−itx|dx <∞.

Exemple 4.1. Calculons la transformée de Fourier de

f(x) = e−a|x|
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f̂(t) =
1√
2π

∫
R
f(x)e−itxdx

=
1√
2π

∫
R
e−(it−a)xdx

+
1√
2π

∫
R
e−(it−a)xdx

=
1√
2π

1

a− it

+
1√
2π

1

a+ it

=
1√
2π

(
2a

a2 + t2

)

Propriétés

Proposition 4.2. 1) Soient f et g deux fonctions admettant une trans-

formée de Fourier. Alors, ∀α, β ∈ C,

αf̂(t) + βĝ(t)

est la transformée de Fourier de

αf(t) + βg(t).

2) Soit f une fonction admettant une transformée de Fourier. Pour λ ∈

R∗, f(λt) admet également une transformée de Fourier telle que

f̂(λt) =
1

|λ|
f̂(
t

λ
).
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3) Soit f une fonction admettant une transformée de Fourier. pour toute

τ ∈ R, g(x) = f(x− τ), alors g admet également une transformée de

Fourier et

ĝ(t) = e−iτtf̂(t).

4) Soit f une fonction admettant une transformée de Fourier. Pour tout

a ∈ R,

fa(t) = eiatf(t)

admet également une transformée de Fourier et

f̂a(t) = f̂(t− a).

Preuve 4.1. 1) Posons h(t) = αf(t) + βg(t), alors

ĥ(t) =
1√
2π

∫
R
αf(x)e−itxdx

+
1√
2π

∫
R
βg(x)e−itxdx

=
α√
2π

∫
R
f(x)e−itxdx

+
β√
2π

∫
R
g(x)e−itxdx

= αf̂(t) + βĝ(t).
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2) Supposons que λ 6= 0 et posons s = λt, alors

f̂(λt) =
1√
2π

∫
R
f(λx)e−itxdx

=
1√
2π

∫
R
f(s)e

−isx
λ

1

|λ|
ds

=
1

|λ|
f̂(
t

λ
)

3) Par le changement de variable suivant , on trouve

ĝ(t) =
1√
2π

∫
R
g(x)e−itxdx

=
1√
2π

∫
R
e−itxf(x− τ)dx

=
1√
2π

∫
R
e−it(x+τ)f(x)dx

= e−itτ f̂(t).

4) On a

f̂a(t) =
1√
2π

∫
R
eiaxf(x)e−itxdx

=
1√
2π

∫
R
e−i(t−a)xf(x)dx

= f̂(t− a).
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4.7 Transformée de Fourier d'une dérivée

Proposition 4.3. Soit f une fonction continue par morceaux, admettant

une transformée de Fourier. Supposons de plus que limt→∞ f(t) = 0, alors la

dérivée f ′ de f admet une transformée et

f̂ ′(x) = ixf̂(x).

Preuve 4.2. Comme f ′ est continue, par une intégration par parties, on

obtient le résultat voulu.

4.8 Inversion de la transformée de Fourier

4.8.1 Formule d'inversion

Dé�nition 4.5. Soit f ∈ L1(R), on appelle transformée de Fourier inverse

de f la fonction dé�nit pour tout w de R par

F−1(f̂(x))(t) = 1√
2π

∫
R
extf̂(x)dx.

Théorème 4.2. Soit f une fonction absolument intégrable et C1 par mor-

ceaux sur R, alors l'intégrale de Fourier
∫
R f̂(t)e

(−iwt)xdt converge pour chaque

t ∈ R et
1√
(2π)

∫
R
f̂(w)e(iwt)dw =

f(t)− + f(t)+
2

.
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En particulier, si f est continue en t, alors

f(t) =
1√
(2π)

∫
R
f̂(w)e(2iπwt)xdw.

4.8.2 Conséquence de la formule d'inversion

Corollaire 4.1. Soient f et g deux fonctions intégrables et de classe C1 par

morceaux sur R.

Si f̂(w) = ĝ(w) pour tout w de R alors f = g en tout points t où f et g sont

continues.

Preuve 4.3. Soit t un point où f et g sont toutes deux continues. Puisque

f̂(w) = ĝ(w), il s'ensuit par la formule d'inversion que

f(t) = 1√
(2π)

∫
R f̂(w)e

(2iπwt)xdw

= 1√
(2π)

∫
R ĝ(w)e

(2iπwt)xdw

= g(t).

4.9 Exercices

Exercice 4.1. Soit f l'application périodique, de période 2π dé�nie sur

[−π, π] par

f(x) = |x|

1. Tracer le graphe de f sur [−3π, 3π].

59



2. Calculer les coe�cients de Fourier associée à f .

3. Écrire la série de Fourier de f et étudier sa convergence.

4. Déduire les sommes suivantes :
∑

n≥1
1

(2n+1)2
. et

∑
n≥1

1
(2n+1)4

.

Exercice 4.2. Soit f l'application périodique, de période 2π dé�nie par

f(x) = x2

si |x| ≤ π.

1. Tracer le graphe de f sur [−4π, 4π].

2. Déterminer la série de Fourier de f.

3. Calculer
∫
[−π,π] x

4dx et déduire la valeur de
∑

n≥1
1
n4 .

4. Montrer que

x2 =
π2

3
+ 4

∑
n≥1

(−1)n cos(nx)
n2

et déduire
∑

n≥1
1
n2 et

∑
n≥1

(−1)n
n2 .

Exercice 4.3. Soit a ∈ R∗, calculer les coe�cients de Fourier réles de la

fonction périodique et continue par morceaux dé�nie ci dessus

fa(x) = exp(ax)

sur [0, 2π[.

Exercice 4.4. Soit f l'application périodique, de période 2π dé�nie sur
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[−π, π] par

f(x) =


π − x, si 0 ≤ x ≤ π,

π + x, si− π ≤ x < 0.

1. Tracer le graphe de f sur [−3π, 3π].

2. Calculer les coe�cients de Fourier associée à f .

3. Écrire la série de Fourier de f et étudier sa convergence.

4. Calculer la somme suivante :
∑

n≥0
1

(2n+1)2
.

5. Montrer que
∑

n≥1 a
2
n = π2

6
.

Exercice 4.5. Soit f l'application périodique, de période π dé�nie sur [0, π[

par

f(x) = 1−
(x
π

)2
.

1. Tracer le graphe de f sur [−2π, 2π].

2. Calculer les coe�cients de Fourier associée à f .

3. Écrire la série de Fourier de f et étudier sa convergence.

4. Calculer les sommes suivantes :
∑

n≥1
1
n2 ,
∑

n≥1
(−1)n+1

n2 et
∑

n≥1
1
n4 .

Exercice 4.6. Soit f une fonction périodique de période T = 2, telle que :

f(x) =

 x si x ∈ [0, 1[,

1

2
si x ∈ [1, 2[.

1. Dessiner le graphe de f sur l'intervalle [−4, 4[.
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2. Calculer les coe�cients de Fourier de f .

3. Étudier la convergence de la série de Fourier sur l'intervalle [0, 2[.

4. En déduire la somme
∑∞

n=0
1

(2n+1)2
.

Exercice 4.7. On se donne une fonction périodique de période 2π dé�nie

sur [−π, π] comme suit

f(x) =


−x, si 0 ≤ x ≤ π,

x, si− π ≤ x < 0.

1. Tracer le graphe de f sur [−4π, 4π].

2. Calculer les coe�cients de Fourier associée à f .

3. Écrire la série de Fourier de f et étudier sa convergence.

4. Calculer la somme suivante :
∑

n≥0
1

(2n+1)2
.

5. Montrer que
∑

n≥1 a
2
n = π2

6
.

Exercice 4.8. Soit f l'application périodique, de période π dé�nie sur [0, π[

par

f(x) = 1−
(x
π

)2
.

1. Tracer le graphe de f sur [−2π, 2π].

2. Calculer les coe�cients de Fourier associée à f .

3. Écrire la série de Fourier de f et étudier sa convergence.

4. Calculer les sommes suivantes :
∑

n≥1
1
n2 ,
∑

n≥1
(−1)n+1

n2 et
∑

n≥1
1
n4 .
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